Phytochemical Analysis and Antisickling Activity of some Medicinal Plants from Sokoto, Nigeria

Authors

DOI:

https://doi.org/10.56919/usci.2433.015

Keywords:

Sickle cell anemia, Anti-sickling properties, Medicinal plants, Phytocompounds

Abstract

Study’s Excerpt/Novelty

  • This study provides insights into the phytochemical properties and antisickling activities of traditionally used plants (Khaya senegalensis, Vernonia amagdalina, Ficus carica, Cassia nigricans, and Ficus sycomorus) in the management of sickle cell anemia.
  • Employing cold methanol maceration for exhaustive extraction, the research reveals the presence of key phytocompounds such as alkaloids, saponins, terpenes, and flavonoids, with notable antisickling activity and erythrocyte membrane stability demonstrated by these plant extracts.
  • The findings, particularly the high sickling reversal percentages and membrane stabilizing potential, underscore the therapeutic potential of these plants in altering hemoglobin S polymerization and maintaining red blood cell integrity.

Full Abstract

Sickle cell anemia occurs due to the polymerization of abnormal hemoglobin S resulting from decreased oxygen tension.  Ultimately, this causes alterations in red blood cell structure, resulting in anemia.  This study, therefore, examined the phytochemical properties and the antisickling activity of some selected plants (Khaya senegalensis, Vernonia amagdalina, Ficus carica, Cassia nigricans, and Ficus sycomorus) that have been reported to be used by traditional medical professionals in the management of sickle cell anaemia.  The plants were exhaustively extracted using cold methanol maceration.  Each plant's methanolic extract was subjected to qualitative and quantitative phytochemical testing to ascertain its phytocompound composition.  To determine the Sickling Reversal Ability of the plant extracts,  sickling was induced in red blood cells (RBCs) by adding sodium metabisulfite (2%) and then treated with 10 µg/ml of the extracts.  The osmotic fragility test was used to investigate the membrane stabilizing effect of selected extracts (250 µg/mL) on the solubility of hemoglobin S and the integrity of the sickle cell membrane.  From the results, it was observed that the plants investigated showed the presence of alkaloids, saponins, terpenes, and flavonoids.  Only anthraquinones was found absent in all plant extracts tested.  The study also revealed a high anti-sickling activity by the plants.  The extracts significantly reversed sickling cells with K. senegalensis (95.29 ± 5.62 %), V. amagdalina (92.19 ± 6.91 %), F. carica (88.32 ± 3.98 %), C. nigricans (92.26 ± 5.01 %) and F. symcomorus (92.11 ± 6.31 %).  Regarding membrane stabilizing potential, F. carica Stem bark demonstrated a considerably greater membrane stabilizing potential (IC50 = 3.98 ± 0.51mg/mL)followed by C. nigricans leaves (5.01 ± mg/mL).  The methanolic extract of the plants studied demonstrated high potency in maintaining erythrocyte membrane integrity and altering the polymerization of sickle cell hemoglobin at increasing concentrations.

References

Acharya, B., Mishra, D. P., Barik, B., Mohapatra, R. K., & Sarangi, A. K. (2023). Recent progress in the treatment of sickle cell disease: an up-to-date review. Beni-Suef University Journal of Basic and Applied Sciences, 12(1). https://doi.org/10.1186/s43088-023-00373-w

Adigwe, O. P., Onoja, S. O., & Onavbavba, G. (2023). A Critical Review of Sickle Cell Disease Burden and Challenges in Sub-Saharan Africa. Journal of Blood Medicine, 14(April), 367–376. https://doi.org/10.2147/JBM.S406196

Akinpelu, B. A., Makinde, A. M., Amujoyegbe, O. O., Isa, M. O., Nwobiko, V. C., Akinwotu, A. O., ... & Oyedapo, O. O. (2017). Evaluation of anti-inflammatory and antisickling potentials of Archidium ohioense Schimp. ex Mull extracts. IOSR Journal of Pharmacy and Biolgical Sciences, 12(1), 18. https://doi.org/10.9790/3008-1201021826

Ali, H.H., Souidi, Z., Benarba, B., & Belhouala, K. (2022). An ethnobotanical study of the traditional uses of medicinal and aromatic plants of the regions of Relizane (Northwest Algeria). International Journal of Environmental Studies, 80, 612 - 634. https://doi.org/10.1080/00207233.2022.2099103

Amujoyegbe, O. O., Idu, M., Agbedahunsi, J. M., & Erhabor, J. O. (2016). Ethnomedicinal survey of medicinal plants used in the management of sickle cell disorder in Southern Nigeria. Journal of ethnopharmacology, 185, 347–360. https://doi.org/10.1016/j.jep.2016.03.042

Busari, A. A., & Mufutau, M. A. (2017). High prevalence of complementary and alternative medicine use among patients with Sickle cell anaemia in a tertiary hospital in Lagos, South West, Nigeria. BMC complementary and alternative medicine, 17(1), 299. https://doi.org/10.1186/s12906-017-1812-2

Chaitanya Latha, B., Ahalya, S., Divya Naidu, P., Mounica, K., & Ravi Kumar, A. (2017). Phytochemical evaluation of Andrographis paniculata, Cassia angustifolia and Eclipta alba. Indian Journal of Research in Pharmacy and Biotechnology, 5(2), 160-163.

Elufioye, T. O., Williams, B. M., & Cyril-Olutayo, M. C. (2020). Identification of the anti- sickling activity of Anogeissus leiocarpus and in silico investigation of some of its phytochemicals. Avicenna Journal of Medical Biochemistry, 8(1), 1-14. https://doi.org/10.34172/ajmb.2020.01

Fernandes, Q. (2017). Therapeutic strategies in Sickle Cell Anemia: The past present and future. Life Sciences, 178, 100–108. https://doi.org/10.1016/j.lfs.2017.03.025

Fontana, L., Alahouzou, Z., Miccio, A., & Antoniou, P. (2023). Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes, 14(3). https://doi.org/10.3390/genes14030577

Global Burden of Disease Study 2013 Collaborators (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England), 386 (9995), 743–800. https://doi.org/10.1016/S0140-6736(15)60692-4

Green, N. S., Manwani, D., Qureshi, M., Ireland, K., Sinha, A., & Smaldone, A. M. (2016). Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatric Blood & Cancer, 63(12), 2146. https://doi.org/10.1002/pbc.26161

Harborne J. B. (1999). An overview of antinutritional factors in higher plants. In: Secondary plants products. Antinutritional and beneficial actions in animal feeding Caygill JC and Mueller- Harvey I, eds. Nottingham Univ Press, UK, 7-16.

Harborne, J. B. (2005). Phytochemical Method: A Guide to Modern Techniques of Plant Analysis, 3rd ed., New Delhi; Springer Pvt. Ltd, 5-16, 22.

Indumathi, C., Durgadevi, G., Nithyavani S., & Kothandaraman, G. (2014). Estimation of terpenoid content and its antimicrobial property in Enicostemma litorrale. International Journal of ChemTech Research, 6(9), 4264-4267.

Imaga, N.A. (2017). Phytomedicines and nutraceuticals: alternative therapeutics for sickle cell anaemia. https://doi.org/10.1155/2013/269659.

Innocent Iba, Itoro Udo, & Nsima Andy. (2022). Potentials of ethnobotanicals and nutraceuticals in the management of sickle cell disease. World Journal of Biology Pharmacy and Health Sciences, 10(1), 086–102. https://doi.org/10.30574/wjbphs.2022.10.1.0024

Inusa, B. P. D., Hsu, L. L., Kohli, N., Patel, A., Ominu-Evbota, K., Anie, K. A., & Atoyebi, W. (2019). Sickle cell disease—genetics, pathophysiology, clinical presentation and treatment. International Journal of Neonatal Screening, 5(2). https://doi.org/10.3390/ijns5020020

Joel, A. A., Mireille, K. K. T., Mattieu, K. A. K., Ange, K. G. K. N. D., Marcelin, K. K. A., Sitapha, O. U. A. T. T. A. R. A., ... & Joseph, D. A. (2023). Phytochemical investigation and antisickling properties of a Poly-herbal formula on the HBSS Red Blood Cells. Journal of Pharmacognosy and Phytochemistry, 12(1), 260-265. https://doi.org/10.22271/phyto.2023.v12.i1d.14583

Khan, S. A., Damanhouri, G. A., Ahmed, T. J., Halawani, S. H., Ali, A., Makki, A., & Khan, S. A. (2022). Omega 3 fatty acids - Potential modulators for oxidative stress and inflammation in the management of sickle cell disease. Jornal de Pediatria, 98(5), 513–518. https://doi.org/10.1016/j.jped.2022.01.001

Krasias, I. (2021). The anti-sickling properties of medicinal plants, insights in botanical medicine. American Journal of Molecular Biology, 11(4), 165-189. https://doi.org/10.4236/ajmb.2021.114013

Lins, P. G., Pugine, S.M.P., Scatolini, A.M., & Pires de Melo, M. (2018). In vitro antioxidant activity of olive leaf extract (Olea europaea L.) and its protective effect on oxidative damage in human erythrocytes. Heliyon 4 (2018) e00805. https://doi.org/10.1016/j.heliyon.2018.e00805

Mishra, S., Sonter, S., Dwivedi, M. K., & Singh, P. K. (2021). Anti-sickling, anti-inflammatory and anti-oxidant potential of Rubia cordifolia L.: A traditionally used medicinal plant of Amarkantak, Madhya Pradesh (India). Medicinal Plants-International Journal of Phytomedicines and Related Industries, 13(3), 499-514. https://doi.org/10.5958/0975-6892.2021.00058.7

Munung, N. S., Nembaware, V., de Vries, J., Bukini, D., Tluway, F., Treadwell, M., Sangeda, R. Z., Mazandu, G., Jonas, M., Paintsil, V., Nnodu, O. E., Balandya, E., Makani, J., & Wonkam, A. (2019). Establishing a Multi-Country Sickle cell anaemia Registry in Africa: Ethical Considerations. Frontiers in genetics, 10, 943. https://doi.org/10.3389/fgene.2019.00943

Musa, H. H., El-Sharief, M., Musa, I. H., Musa, T. H., & Akintunde, T. Y. (2021). Scientific African, 12, e00774. https://doi.org/10.1016/j.sciaf.2021.e00774

Muthukumaran, P., Saraswathy, N., & Aswitha, V. (2016). Assessment of Total Phenolic, Flavonoid, Tannin Content and Phytochemical Screening of Leaf and Flower Extracts from Peltophorum pterocarpum (DC.) Backer ex K.Heyne: a comparative study. Pharmacogn. J. https://doi.org/10.5530/pj.2016.2.7

Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules, 27(2), 349. https://doi.org/10.3390/molecules27020349

National Population Commission (2006) PHC Priority Tables.

Neto, V. M. D. S. (2023). Probing the Anti-Sickling Power of Distinct Drugs in Sickle Cell Disease (Doctoral dissertation).

Nevitt, S. J., Jones, A. P., & Howard, J. (2017). Hydroxyurea (hydroxycarbamide) for Sickle cell anaemia. The Cochrane database of systematic reviews, 4(4), CD002202. https://doi.org/10.1002/14651858.CD002202.pub2

Ngbolua, K., Herintsoa, R., Hajatiana, R. Mudogo, D., Tshilanda, D., Tshibangu, D. S. T. & Mpiana, P. T. (2015), “In vitro antierythrocyte sickling effect of lunularic acid of natural origin,” International Blood Research & Reviews, 4(3), 1–6. https://doi.org/10.9734/IBRR/2015/21718

Odame, I., & Jain, D. (2020). Sickle cell disease: Progress made & challenges ahead. Indian Journal of Medical Research, 151(6), 505-508. https://doi.org/10.4103/ijmr.IJMR_2064_20

Oder, E., Safo, M. K., Abdulmalik, O., & Kato, G. J. (2016). New developments in anti‐sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo?. British journal of haematology, 175(1), 24-30. https://doi.org/10.1111/bjh.14264

Oguntibeju, O. O. (2023). A Review of the Relationship between the Immune Response , Inflammation , Oxidative Stress , and the Pathogenesis of Sickle Cell Anaemia.

Ohiagu, F., Chikezie, P., & Chikezie, C. (2021). Sickle hemoglobin polymerization inhibition and antisickling medicinal plants. J. Phytopharmacol, 10, 126-133. https://doi.org/10.31254/phyto.2021.10209

Okeowo, G., & Fatoba, I. (2022). “State of States 22 Edition” (PDF). Budgit.org. BudgIT.

Oniyangi, O., & Cohall, D. H. (2020). Phytomedicines (medicines derived from plants) for sickle cell disease. Cochrane Database of Systematic Reviews, (9). https://doi.org/10.1002/14651858.CD004448

Paintsil, V., Amuzu, E. X., Nyanor, I., Asafo-Adjei, E., Mohammed, A. R., Yawnumah, S. A., Oppong-Mensah, Y. G., Nguah, S. B., Obeng, P., Dogbe, E. E., Jonas, M., Nembaware, V., Mazandu, G., Ohene-Frempong, K., Wonkam, A., Makani, J., Ansong, D., Osei-Akoto, A., & Sickle cell anaemia in Sub-Saharan Africa Consortium (2022). Establishing a Sickle cell anaemia Registry in Africa: Experience from the Sickle Pan-African Research Consortium, Kumasi-Ghana. Frontiers in genetics, 13, 802355. https://doi.org/10.3389/fgene.2022.802355

Rankine-Mullings, A. E., & Owusu-Ofori, S. (2017). Prophylactic antibiotics for preventing * pneumococcal infection in children with Sickle cell anaemia. The Cochrane database of systematic reviews, 10(10), CD003427. https://doi.org/10.1002/14651858.CD003427.pub4

Renó, C. O., Maia, G. A. S., Nogueira, L. S., de Barros Pinheiro, M., Rios, D. R. A., Cortes, V. F., & de Lima Santos, H. (2021). Biochemical evaluation of the effects of hydroxyurea in vitro on red blood cells. Antioxidants, 10(10), 1599. https://doi.org/10.3390/antiox10101599

Sachdev, V., Rosing, D. R., & Thein, S. L. (2021). Cardiovascular complications of sickle cell disease. Trends in cardiovascular medicine, 31(3), 187-193. https://doi.org/10.1016/j.tcm.2020.02.002

Singh, B., Singh, B., Kishor, A., Singh, S., Bhat, M. N., Surmal, O., & Musarella, C. M. (2020). Exploring plant-based ethnomedicine and quantitative ethnopharmacology: Medicinal plants utilized by the population of Jasrota Hill in Western Himalaya. Sustainability, 12(18), 7526. https://doi.org/10.3390/su12187526

Süntar, I. (2020). Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochemistry Reviews, 19(5), 1199-1209. https://doi.org/10.1007/s11101-019-09629-9

Tebbi, C. K. (2022). Sickle cell disease, a review. Hemato, 3(2), 341-366. https://doi.org/10.3390/hemato3020024

The World Medical Association (2008) “Declaration of Helsinki: ethical principles for medical research involving human subjects,” pp. 1–5. https://doi.org/10.1515/9783110208856.233

Twaij, B. M., & Hasan, M. N. (2022). Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. International Journal of Plant Biology, 13(1), 4-14. https://doi.org/10.3390/ijpb13010003

Vaishnava, S., & Rangari, V.D. (2016). A review on phytochemical and pharmacological research - remedy for Sickle cell anaemia. International Journal Pharmaceutical Science Research, 7(2):472-81. https://doi.org/10.13040/IJPSR.0975-8232.7(2).472-81

Virot, M., Tomao, V., Colnagui, G., Visinoni, F. & Chemat, F. (2007). New microwave-integrated Soxhlet extraction. An advantageous tool for the extraction of lipids from food products, J. Chromatogr. A 1174- 138e144. https://doi.org/10.1016/j.chroma.2007.09.067

WHO, (2013). Centers for Disease Control and Prevention. Lancet, 381: 142-51.

Yembeau, N. L., Biapa Nya, P. C., Pieme, C. A., Tchouane, K. D., Kengne Fotsing, C. B., Nya Nkwikeu, P. J., ... & Telefo, P. B. (2022). Ethnopharmacological Study of the Medicinal Plants Used in the Treatment of Sickle Cell Anemia in the West Region of Cameroon. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/5098428

Downloads

Published

2024-07-27

How to Cite

Ayuba, S. A., & Onu, A. (2024). Phytochemical Analysis and Antisickling Activity of some Medicinal Plants from Sokoto, Nigeria. UMYU Scientifica, 3(3), 130–140. https://doi.org/10.56919/usci.2433.015