The Folding Potential of Elastically Scattered d+ 24Mg Employing B3Y-Fetal Interaction within the Double Folding Model Framework

Authors

  • Raymond Chivirter Abenga Department of Pure and Applied Physics, Veritas University Abuja, Nigeria https://orcid.org/0000-0001-7040-9395
  • Yahaya Y Ibrahim Department of Physics, Bayero University Kano, Nigeria
  • Idris D Adamu Department of Physics, Bayero University Kano, Nigeria

DOI:

https://doi.org/10.56919/usci.2433.027

Keywords:

B3Y-Fetal, Cross-Section, Double-folding, Elastic Channel, Folding potential

Abstract

Study’s Excerpt/Novelty

  • In this study, double-folding model with the B3Y-Fetal interaction was applied to derive optical potentials for deuteron scattering from 24Mg. 
  • The research validates the efficacy of mass-dependent interactions in optical potential calculations by accurately reproducing experimental differential cross-sections across a broad energy range.
  • This work advances the understanding of nuclear reactions by demonstrating the suitability of the B3Y-Fetal interaction in modeling elastic scattering phenomena.

Full Abstract

The analysis of the deuteron scattering from  was performed in the elastic channel using the double-folding model to evaluate the optical potentials of the present study. Both the real and the imaginary parts of the optical potentials were computed using a mass-dependent interaction (B3Y-Fetal) in the double-folding formalism. The derived double-folding potentials were used to analyse the differential cross-sections of  within the energy range of 60-170 MeV. With the derived optical potentials, the reaction and differential cross-sections of  were extracted in the optical model. The plots of the computed differential cross-sections were made and the results were compared to those obtained experimentally to ascertain the suitability of the derived potentials and the B3Y-Fetal interaction.  In conclusion, the optical potentials obtained using the double-folding model with the B3Y-Fetal interaction were successful in reproducing the experimental data.

References

Abenga, R. C., & Fiase, J. O. (2019). Elastic Scattering Of 12C+12C and 16O+16O Using an Effective Mass Dependent M3Y-Type Interaction. International Journal of Innovative Research and Advanced Studies, 6(2), 57–61.

Abenga, R. C., Fiase, J. O., & Ibeh, G. J. (2020). Optical model analysis of a + Ca at E = 104 and 141.7 MeV 40 lab using a mass-dependent M3Y-type effective interaction. Nigerian Annals of Pure and Applied Science, 3(2), 252–260.

Abenga, R. C., Ibrahim, Y. Y., & Adamu, I. D. (2023). Double Folding Potential and the Deuteron-Nucleus Inelastic Scattering in the Optical Model Framework. Open Access Library Journal, 10, 1–16. https://doi.org/10.4236/oalib.1109550

Abenga, R. C., Yahaya, Y. I., & Adamu, I. D. (2021). Double Folding Potential of Deuteron Elastic Scattering on Target Nuclei in the Mass Range of 50≤ A ≤ 208 Using a Mass-Dependent Effective Interaction. Bayero Journal of Physics and Mathematical Sciences, 01(13), 1–14.

Amer, H. A., Amar, A., Hamada, S., Bondouk, I. I., & El-Hussiny, F. A. (2016). Optical and double folding model analysis for alpha particles elastically scattered from 9 Be and B nuclei at different energies. World Academy of Science, Engineering and Technology, Open Science Index 110, International Journal of Chemical and Molecular Engineering, 10(2), 161–166.

Anantaraman, N., Toki, H., & Bertsch, G. F. (1983). An effective interaction for inelastic scattering derived from the Paris potential. Nuclear Physics, Section A, 398(2), 269–278. https://doi.org/10.1016/0375-9474(83)90487-6

Bäumer, C., Bassini, R., van den Berg, A. M., De Frenne, D., Frekers, D., Hagemann, M., Hannen, V. M., Harakeh, M. N., Heyse, J., de Huu, M. A., Jacobs, E., Mielke, M., Rakers, S., Schmidt, R., Sohlbach, H., & Wörtche, H. J. (2001). Deuteron elastic and inelastic scattering from 12 C, 24 Mg, and 58 Ni at 170 MeV. Physical Review C - Nuclear Physics, 63(3), 376011–376014. https://doi.org/10.1103/PhysRevC.63.037601

Behairy, K., Zakaria, M. M., & Hassanain, M. A. (2015). Elastic and Inelastic α -Scatterings from 58Ni, 116Sn, and 208Pb Targets at 288, 340, 480, and 699 MeV. Brazilian Journal of Physics, 54(5), 1–5. https://doi.org/10.1007/s13538-015-0351-x

Bertulani, C. A. (2009). Nuclear reactions. In Wiley Encyclopedia of Physics (p. 45pp). https://doi.org/10.1007/978-3-642-12698-7_9

Bertulani, C. A., Campbell, C. M., & Glasmacher, T. (2003). A computer program for nuclear scattering at intermediate and high energies ✩. 152, 317–340. https://doi.org/10.1016/S0010-4655(02)00824-X

Brandan, M. E., & Satchler, G. R. (1997). The interaction between light heavy-ions and what it tells us. Physics Reports, 285, 143–243.

Burtebayev, N., Janseitov, D. M., Kerimkulov, Z., Alimov, D., Nassurlla, M., Valiolda, D. S., Mauyey, B., Demyanova, A. S., Hamada, S., & Aimaganbetov, A. (2020). Elastic and inelastic scattering of deuterons from 13 C. Journal of Physics: Conference Series, 1555, 1–7. https://doi.org/10.1088/1742-6596/1555/1/012028

De Vries, H., De Jager, C. W., & De Vries, C. (1987). Nuclear Charge-Density-Distribution Parameters from Elastic Electron Scattering. Atomic Data and Nuclear Data Tables, 36(3), 495–536.

El-Attar, A. L., Farid, M. E., & El-Aref, M. G. (2008). Optical Model Analyses of Deuteron Inelastic Scattering. 9th International Conference for Nuclear Sciences and Applications, Sharm Al Sheikh (Egypt), 1239.

Farid, M. E. (2002). Heavy ion double folding cluster optical potentials. Physical Review C, 65(June), 11–13. https://doi.org/10.1103/PhysRevC.65.067303

Farid, M. E., Alsagheer, L., Alharbi, W. R., & Ibraheem, A. A. (2014). Analysis of Deuteron Elastic Scattering in the Framework of the Double Folding Optical Potential Model. Life Science Journal, 11(5), 208–216. https://doi.org/http://dx.doi.org/110.21043/equilibrium.v3i2.1268

Farid, M. E., Mahmoud, Z. M. M., & Hassan, G. S. (2001). Analysis of heavy ions elastic scattering using the double folding cluster model. Nuclear Physics A, 691, 671–690.

Fiase, J. O., Devan, K. R. S., & Hosaka, A. (2002). Mass dependence of M3Y-type interactions and the effects of tensor correlations. Physical Review C - Nuclear Physics, 66(1), 014004–014010. https://doi.org/10.1103/PhysRevC.66.014004

Hagino, K., Takehi, T., & Takigawa, N. (2006). No-recoil approximation to the knock-on exchange potential in the double folding model for heavy-ion collisions. Physical Review C - Nuclear Physics, 74(3), 2–5. https://doi.org/10.1103/PhysRevC.74.037601

Hamada, S., Bondok, I., & Abdelmoatmed, M. (2016). Double Folding Potential of Different Interaction Models for 16 O + 12 C Elastic Scattering. Brazilian Journal of Physics, 1–6. https://doi.org/10.1007/s13538-016-0450-3

Ibraheem, A. A. (2016). Analysis of Deuteron-Nucleus Scattering Using Sao Paulo Potential. Brazilian Journal of Physics, 46(6), 746–753. https://doi.org/10.1007/s13538-016-0453-0

Ibraheem, A. A., Branch, A., Farid, M. E., & Elshamy, E. F. (2023). Comprehensive Examination of the Elastic Scattering Angular Distributions of 10 C + 4 He, 27 Al, 58 Ni and 208 Pb Using Various Potentials. Revista Mexicana Defisica, 69(June), 1–13.

Khoa, D. T., & Von Oertzen, W. (1993). A nuclear matter study using the density-dependent M3Y interaction. Physics Letters B, 304(12), 8–16. https://doi.org/10.1016/0370-2693(93)91391-Y

Khoa, D. T., Von Oertzen, W., & Ogloblin, A. A. (1996). Study of the equation of state for asymmetric nuclear matter and interaction potential between neutron-rich nuclei using the density-dependent M3Y interaction. Nuclear Physics A, 602, 98–132. https://doi.org/10.1016/0375-9474(96)00091-7

Kobos, A. M., Brown, B. A., Hodgson, P. E., Satchler, G. R., & Budzanowski, A. (1982). Folding model analysis of α-particle elastic scattering with a semirealistic density-dependent effective interaction. Nuclear Physics, Section A, 384(1–2), 65–87. https://doi.org/10.1016/0375-9474(82)90305-0

Kurkcuoglu, M. E., Aytekin, H., & Boztosun, I. (2006). An investigation of the 16 o + 16 o elastic scattering by using alpha alpha-double folding potential in optical model formalism. Modern Physics Letters A, 21(29), 2217–2232.

Langanke, K., Maruhn, J. A., & Koonin, S. E. (1993). Computational Nuclear Physics 2. In S. E. Langanke, K., Maruhn J. A., Koonin (Ed.), Springer-Verlag. Springer-Verlag. https://doi.org/10.1007/978-1-4613-9335-1

Love, W. G., & Owen, L. W. (1975). Exchange effects from realistic interactions in the reformulated optical model. Nuclear Physics A, 239, 74–82. https://doi.org/10.1016/0375-9474(75)91133-1

Matsuzaki, H. (1972). Elastic and Inelastic Scatterings of Heavy Ions. Progress of Theoretical Physics, 48(5), 1534–1546.

Modarres, M., & Rahmat, M. (2015). The LOCV averaged two-nucleon interactions versus the density-dependent M 3 Y potential for the heavy-ion collisions. Nuclear Physics A, 934, 148–166. https://doi.org/10.1016/j.nuclphysa.2014.11.006

Moharram, S. A., & El-Shal, A. O. (2002). Spin Polarized Cold and Hot Dense Neutron Matter. Turk Journal of Physics, 26, 167–177.

Olorunfunmi, S. D., & Olatinwo, A. S. (2023). Analysis of Elastic Scattering Cross Sections of 16 O On 27 Al And 154 Sm Using the Semi-Microscopic Double Folding Model. Ife Journal of Science, 25(2), 239–250.

Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., & Hlavaˇ, S. (2014). Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library ( EXFOR ): International Collaboration Between Nuclear Reaction Data Centres ( NRDC ). Nuclear Data Sheets, 120, 272–276. https://doi.org/10.1016/j.nds.2014.07.065

Satchler, G. R. (1983). Direct Nuclear Reactions. Oxford University Press.

Satchler, G. R. (1994). A simple effective interaction for peripheral heavy-ion collisions at intermediate energies. Nuclear Physics A, 579, 241–255.

Satchler, G. R., & Love, W. G. (1979). Folding model potentials from realistic interactions for heavy-ion scattering. Physics Reports (Review Section of Physics Letters), 55(3), 183–254. https://doi.org/10.1016/0370-1573(79)90081-4

Zagrebaev, V., Denikin, A., & Alekseev, A. (2000). Optical model of elastic scattering, Nuclear Reaction Video Project. http://nrv.jinr.ru/nrv/webnrv/elastic_scattering/els1.htm.

Zang, G.-L., Zang, H.-Q., Liu, Z.-H., Zang, C.-L., Lin, C.-J., Yang, F., An, G.-P., Jia, H.-M., Wu, Z.-D., Xu, X.-X., Bai-Chun-Lin, & Yu, N. (2007). Double Folding Model Calculation Applied to the Real Part of Interaction Potential. High Energy Physics and Nuclear Physics, 13(7), 634–641. https://doi.org/10.3321/j.issn

Downloads

Published

2024-09-16

How to Cite

Abenga, R. C., Ibrahim, Y. Y., & Adamu, I. D. (2024). The Folding Potential of Elastically Scattered d+ 24Mg Employing B3Y-Fetal Interaction within the Double Folding Model Framework. UMYU Scientifica, 3(3), 239–250. https://doi.org/10.56919/usci.2433.027