In-Vitro Antifungal Efficacy of Salicylic Acid and Palm Oil on the Dermatophytic Fungus Causing Athlete’s Foot Disease

Authors

  • Tijjani Mustapha Department of Plant Biology, Federal University, PMB 7156, Dutse, Jigawa State, Nigeria https://orcid.org/0000-0001-6366-6510
  • Mai-Abba Ishiyaku Abdullahi Department of Plant Biology, Federal University, PMB 7156, Dutse, Jigawa State, Nigeria https://orcid.org/0009-0006-7317-9162
  • Nathaniel Luka Kwarau Department of Plant Biology, Federal University, PMB 7156, Dutse, Jigawa State, Nigeria https://orcid.org/0009-0008-4582-1503
  • Hadiza Murtala Musa Department of Plant Biology, Federal University, PMB 7156, Dutse, Jigawa State, Nigeria
  • A S Kutama Department of Plant Biology, Federal University, PMB 7156, Dutse, Jigawa State, Nigeria

DOI:

https://doi.org/10.56919/usci.2433.019

Keywords:

Dermatophyte, Tinea pedis, Salicylic acid, Palm oil, MIC, MFC

Abstract

Study’s Excerpt/Novelty

  • This study investigates the antifungal properties of salicylic acid and palm oil against the dermatophytes responsible for infecting Athlete's foot.
  • By evaluating both the minimum inhibitory and fungicidal concentrations through in-vitro experiments, the research provides new insights into the potential use of these substances as alternative treatments.
  • The significant inhibitory effects observed, particularly for salicylic acid, highlight its stronger fungicidal properties, offering a promising alternative for future therapeutic applications in managing Tinea pedis.

Full Abstract

 

Athlete's foot, or Tinea pedis, is a widespread fungal infection primarily affecting the skin between the toes, caused by dermatophytes like Trichophyton rubrum and T. mentagrophytes.  This study aimed to evaluate the in-vitro effects of salicylic acid and palm oil on dermatophytic fungus responsible for Athlete’s foot disease.  Minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) were determined for salicylic acid and palm oil.  The agar well diffusion method was used to measure the zone of inhibition at various concentrations (25%, 50%, 75%, and 100%) of both substances.  The MIC was assessed using Sabouraud Dextrose Broth at concentrations of 3.12%, 6.25%, and 12.5%.  Results indicated significant inhibitory effects of both salicylic acid and palm oil against the dermatophytes causing athlete's foot.  The highest zone of inhibition was observed at 100% concentration for both substances: 5.50 mm for salicylic acid and 4.3 mm for palm oil.  At 50% and 75% concentrations, the inhibition zones were 3.67 mm and 3.97 mm for salicylic acid and 2.20 mm and 3.00 mm for palm oil, respectively.  The MIC for both substances was determined to be 3.12%, while the MFC was 3.12% for salicylic acid and 6.25% for palm oil, indicating stronger fungicidal properties for salicylic acid.  Salicylic acid and palm oil show promise as agents against Tinea pedis.  Further public health efforts are recommended to raise awareness about the prevention and transmission of the disease.

References

Agrawal, P. V., Sharma, Y. K., Kumar, A., Deora, M., Raheja, A., & Kharat, R. (2020). Assessment of impairment of quality of life in foot eczema and correlation thereof with epidemiological data of its patients: A cross-sectional study. Indian Dermatology Online Journal, 11(5), 766-770. https://doi.org/10.4103/idoj.IDOJ_588_19

Alamir, H. T. A., Shayoub, M. E. L. A., Abdalla, W. G., & Elamin, E. S. In vitro Antifungal Activity of Combination of Miconazole, Salicylic Acid and Benzoic Acid in Two Different Bases against Trichophyton mentagrophytes.

Aliuddin, F., Lyons, A., O'Sullivan, O., Kluzek, S., & Pearson, R. (2023). Athlete’s foot and associated risk factors: a cross-sectional mixed-methods study. BMJ Mil Health. https://doi.org/10.1136/military-2023-002379

Allen, K., Feria-Arias, E., Kreulen, C., & Giza, E. (2019). Biologics in the Foot and Ankle. Sports Injuries of the Foot and Ankle: A Focus on Advanced Surgical Techniques, 305-316. https://doi.org/10.1007/978-3-662-58704-1_27

Alolofi, S. A., El-Tawaty, S. A., Yagoub, S. O., & Nimir, A. H. (2022). Antifungal Activities Of Some Therapeutic Drugs and Extracts of Ziziphus Nummaularia and Curcuma Domestica Against Dermatophytes. Electronic Journal of University of Aden for Basic and Applied Sciences, 3(2), 48-56. https://doi.org/10.47372/ejua-ba.2022.2.152

Al-Surhanee, A. A. (2022). Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi Journal of Biological Sciences, 29(4), 2933-2941. https://doi.org/10.1016/j.sjbs.2022.01.020

Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy, 48(1), 5-16. https://doi.org/10.1093/jac/48.suppl_1.5

Asoka, G. M., Agwa, O. K., Ibiene, A. A., and Asaolu, K. (2023). Optimum Conditions for Cultivation of Chlorella vulgaris on Oil Palm Residue Extracts. Journal of Advances in Biology & Biotechnology, 26(4), 40-52. https://doi.org/10.9734/jabb/2023/v26i4630

Ates, A., Ozcan, K., & Ilkit, M. (2008). Diagnostic value of morphological, physiological and biochemical tests in distinguishing Trichophyton rubrum from Trichophyton mentagrophytes complex. Sabouraudia, 46(8), 811-822. https://doi.org/10.1080/13693780802108458

Barchiesi, F., Silvestri, C., Arzeni, D., Ganzetti, G., Castelletti, S., Simonetti, O., ... & Scalise, G. (2009). In vitro susceptibility of dermatophytes to conventional and alternative antifungal agents. Medical Mycology, 47(3), 321-326. https://doi.org/10.1080/13693780802641920

Dhoot, D., Deshmukh, G., Mahajan, H., Rashmi, K. M., & Barkate, H. (2020). Usefulness of Luliconazole 1% and Salicylic Acid 3% as FDC Cream in the Treatment of Hyperkeratotic Tinea Pedis. Clinical Dermatology Journal, 5(4), 000225. https://doi.org/10.23880/cdoaj-16000225

Durdu, M., Seçkin, D., & Baba, M. (2011). The Tzanck smear test: rediscovery of a practical diagnostic tool. Skinmed, 9(1), 23-32.

Espinel-Ingroff, A., Arendrup, M. C., Pfaller, M. A., Bonfietti, L. X., Bustamante, B., Canton, E., ... & Turnidge, J (2013).Interlaboratory variability of caspofungin MICs for Candida spp. using CLSI and EUCAST methods: should the clinical laboratory be testing this agent?. Antimicrobial agents and chemotherapy, 57(12), 5836-5842. https://doi.org/10.1128/AAC.01519-13

Fatakhov, E. N., Bijlani, T., & Chang, R. G. (2020). Regenerative Medicine for the Foot and Ankle. Regenerative Medicine for Spine and Joint Pain, 225-243. https://doi.org/10.1007/978-3-030-42771-9_13

Ghannoum, M. A., & Perfect, J. R. (Eds.). (2009). Antifungal Therapy. London: Informa Healthcare. https://doi.org/10.3109/9780849387869-24

Hamid, F. A., Zainal, N. H., Othman, N. E. A., Ismail, F., Wahab, N. A., & Aziz, A. A. (2022). Characterisation of palm pyroligneous acid and its effectiveness as antifungal agent for oil palm trunk. Journal of Oil Palm Research, 34(4), 678-685.

Harmon, S., Alvarez, C., Hannan, M. T., Callahan, L. F., Gates, L. S., Bowen, C. J., ... & Golightly, Y. M. (2023). Foot Symptoms are Associated with Decreased Time to All‐Cause Mortality: the Johnston County Osteoarthritis Project. Arthritis Care & Research. https://doi.org/10.1002/acr.25186

Hawar, S. N., Taha, Z. K., Hamied, A. S., Al-Shmgani, H. S., Sulaiman, G. M., & Elsilk, S. E. (2023). Antifungal activity of bioactive compounds produced by the endophytic fungus Paecilomyces sp.(JN227071. 1) against Rhizoctonia solani. International Journal of Biomaterials, 2023(1), 2411555. https://doi.org/10.1155/2023/2411555

Jayadi, L. (2022). Analysis of Salicylic Acid in Face Creams Circulating in the Big Market Malang City. JOPS (Journal Of Pharmacy and Science), 6(1), 14-20. https://doi.org/10.36341/jops.v6i1.2972

Katsambas, A., Abeck, D., Haneke, E., Van De Kerkhof, P., Burzykowski, T., Molenberghs, G., & Marynissen, G. (2005). The effects of foot disease on quality of life: results of the Achilles Project. Journal of the European Academy of Dermatology and Venereology, 19(2), 191-195. https://doi.org/10.1111/j.1468-3083.2004.01136.x

Khurana, A., Sardana, K., & Chowdhary, A. (2019). Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genetics and Biology, 132, 103255. https://doi.org/10.1016/j.fgb.2019.103255

Kota, S. S. N., Bandhakavi, S., & Anjali, C. (2022). Athlete’s foot disease: A comparative study on marketed products. Journal of Drug Delivery and Therapeutics, 12(3), 1-4. https://doi.org/10.22270/jddt.v12i3.5455

Leung, A. K., Barankin, B., Lam, J. M., & Leong, K. F. (2023). Childhood guttate psoriasis: an updated review. Drugs in context, 12. https://doi.org/10.7573/dic.2023-8-2

Liberman, B., & Lefkovits, A. (2007). U.S. Patent No. 7,253,175. Washington, DC: U.S. Patent and Trademark Office.

López-López, D., Pérez-Ríos, M., Ruano-Ravina, A., Losa-Iglesias, M. E., Becerro-de-Bengoa-Vallejo, R., Romero-Morales, C., ... & Navarro-Flores, E. (2021). Impact of quality of life related to foot problems: A case–control study. Scientific reports, 11(1), 14515. https://doi.org/10.1038/s41598-021-93902-5

Maharaj, P. D. (2006). The efficacy of a topical naturopathic complex (Allium sativum MT, Hydrastis canadensis MT, Apis mellifica D3 and Urtica urens D3) in the treatment of Tinea pedis (Doctoral dissertation).

Maheshwari, N., Maheshwari, N., Mishra, D. K., & Goyal, A. (2023). Phytotherapeutic potential of natural herbal medicines for management of psoriasis: current status. Pharmacognosy Research, 15(1). https://doi.org/10.5530/097484900261

Mailafia, S., Olabode, H. O. K., & Osanupin, R. (2017). Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria. Veterinary world, 10(4), 393. https://doi.org/10.14202/vetworld.2017.393-397

Mosad, B. E., El-Sharkawy, H. H. A., Taher, M. A., & Elsherbiny, E. A. (2022). Effect of Salicylic Acid on Induction of Resistance Against Green Mold in Orange Fruits. Journal of Plant Protection and Pathology, 13(7), 137-140. https://doi.org/10.21608/jppp.2022.143351.1078

Nweze, N. E., Anene, B. M., & Asuzu, I. U. (2011). Investigation of the antitrypanosomal activity of Buchholzia coriacea seed extract against a field strain of Trypanosoma congolense. African Journal of Traditional, Complementary and Alternative Medicines, 8(5S). https://doi.org/10.4314/ajtcam.v8i5S.23

Ogba, O. M., Udoh, D. I., Udonkang, M. I., Eyo, A. A. O., Chukwueke, S. E., Eshemitan, Z., & Akpan, N. G. (2023). Antimicrobial Effect of Cassia alataLeaf Extracts on Fungal Isolates from Tinea Infections. Tropical Journal of Natural Product Research, 7(5). https://doi.org/10.26538/tjnpr/v7i5.29

Olkhovskaya, K. B., Perlamutrov, Y. (2008). Step-wise treatment of athlete's foot (tinea pedis) using isoconazole combined with a corticosteroid followed by isoconazole alone. Mycoses, https://doi.org/10.1111/j.1439-0507.2008.01613.x

Pham, J., Nayel, A., Hoang, C., & Elbayoumi, T. (2016). Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas. Drug delivery, 23(5), 1514-1524.

Puspita, F., Aqita, D. K., & Yuda, P. A. (2023). Effectiveness of Bio Fungicide with Active Ingredients Consortium of Trichoderma virens to Control Ganoderma boninense in Palm Oil Nursery. In IOP Conference Series: Earth and Environmental Science (Vol. 1188, No. 1, p. 012005). https://doi.org/10.1088/1755-1315/1188/1/012005

Rahman, N., Mahmood, R., Rahman, H., & Haris, M. (2014). Spectrophotometric screening of potent bactericidal property of Thevetia peruviana Schum. leaf and fruit rind extracts on clinical and plant pathogens. International Journal of Applied Sciences and Biotechnology, 2(4), 451-459. https://doi.org/10.3126/ijasbt.v2i4.11206

Rudramurthy, S. M., & Kaur, H. (2020). Superficial fungal infections: Clinical practices and management in Asia. Clinical Practice of Medical Mycology in Asia, 223-242. https://doi.org/10.1007/978-981-13-9459-1_15

Saputra, R., Hamzah, A., Puspita, F., Nasrul, B., & Naibaho, T. E. (2022, February). Study of salicylic acid concentration in suppressing the development of Ganoderma spp. causes of stem rot disease in vitro and its effect on oil palm seedling growth. In IOP Conference Series: Earth and Environmental Science (Vol. 978, No. 1, p. 012024). IOP Publishing. https://doi.org/10.1088/1755-1315/978/1/012024

Shalal, O. S., Rasheed, Q. A., & Alkurjiya, D. A. (2022). A molecular Study of the Microsporum Canis and Trichophyton Mentagrophytes Associated Fungal Infection: Athlete’s Foot among Farmers. Indian Journal of Forensic Medicine & Toxicology, 16(1), 941-950. https://doi.org/10.37506/ijfmt.v16i1.17617

Silva, P. M., Gonçalves, S., & Santos, N. C. (2014). Defensins: antifungal lessons from eukaryotes. Frontiers in microbiology, 5, 97. https://doi.org/10.3389/fmicb.2014.00097

Sunandar, A. P., Aris, A., & Fitri, R. L. (2023). Evaluation of inhibitory activity of salak peel extract and lotion formula on Trichophyton mentagrophytes. In AIP Conference Proceedings (Vol. 2556, No. 1). AIP Publishing. https://doi.org/10.1063/5.0110787

Ubgogu, O. C., Onyeagba, R. A., & Chigbu, O. A. (2006). Lauric acid content and inhibitory effect of palm kernel oil on two bacterial isolates and Candida albicans. African Journal of biotechnology, 5(11).

Wang, X., Sun, J., Wang, S., Sun, T., & Zou, L. (2023). Salicylic acid promotes terpenoid synthesis in the fungi Sanghuangporus baumii. Microbial Biotechnology, 16(6), 1360-1372. https://doi.org/10.1111/1751-7915.14262

Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols, 3(2), 163-175. https://doi.org/10.1038/nprot.2007.521

Yan, H., Meng, X., Lin, X., Duan, N., Wang, Z., & Wu, S. (2023). Antifungal activity and inhibitory mechanisms of ferulic acid against the growth of Fusarium graminearum. Food Bioscience, 52, 102414. https://doi.org/10.1016/j.fbio.2023.102414

Yang, M., Pan, L., Tian, H., Zhou, T., Xin, H., Feng, Y., ... & Lu, X. (2024). pH-and Matrix Metalloproteinase-Responsive Multifunctional Bilayer Microneedles Platform for Treatment of Tinea Pedis. ACS Biomaterials Science & Engineering, 10(5), 3108-3119. https://doi.org/10.1021/acsbiomaterials.4c00305

Zhan, R. L., Yang, S. J., Ho, H. H., Liu, F., Zhao, Y. L., Chang, J. M., & He, Y. B. (2010). Mango malformation disease in south China caused by Fusarium proliferatum. Journal of Phytopathology, 158(11‐12), 721-725. https://doi.org/10.1111/j.1439-0434.2010.01688.x

Zhang, G., Yan, P., Leng, D., Shang, L., Zhang, C., Wu, Z., & Wang, Z. (2023). Salicylic Acid Treatment Alleviates the Heat Stress Response by Reducing the Intracellular ROS Level and Increasing the Cytosolic Trehalose Content in Pleurotus ostreatus. Microbiology Spectrum, 11(1), e03113-22. https://doi.org/10.1128/spectrum.03113-22

Downloads

Published

2024-08-19

How to Cite

Mustapha, T., Abdullahi, M.-A. I., Kwarau, N. L., Musa, H. M., & Kutama, A. S. (2024). In-Vitro Antifungal Efficacy of Salicylic Acid and Palm Oil on the Dermatophytic Fungus Causing Athlete’s Foot Disease. UMYU Scientifica, 3(3), 166–172. https://doi.org/10.56919/usci.2433.019