Dose-Dependent Hepatotoxic and Cardiotoxic Effects of Amlodipine in Wistar Rats

Authors

  • G I Iyare Department of Medical Laboratory Science, Faculty of Applied Sciences, Edo University Uzairue, Edo State, Nigeria
  • Nosa Terry Omorodion Department of Medical Laboratory Science, School of Basic Medical Sciences, University of Benin, Nigeria https://orcid.org/0000-0002-5500-5293
  • A Momodu Department of Medical Laboratory Science, Faculty of Applied Sciences, Edo University Uzairue, Edo State, Nigeria

DOI:

https://doi.org/10.56919/usci.2433.025

Keywords:

Amlodipine, Histological analysis, Liver tissues, Heart tissues, Wistar rat

Abstract

Study’s Excerpt

  • Hepatotoxic effects of amlodipine is evaluated in Wistar rats.
  • The research identifies mild degenerative changes in heart tissues and inflammatory responses in liver tissues at higher doses.
  • Safety evaluations of antihypertensive medications is recommended.

Full Abstract

There is a high prevalence of premature deaths worldwide because of hypertension, a common condition that greatly raises the risk of heart disease, brain abnormalities, and renal malfunction. Reaching more than a billion people worldwide, low- and middle-income nations are the main areas where the illness is found. In order to lessen vascular smooth muscle contraction and increase vasodilation, amlodipine, a drug often used for hypertension, inhibits L-type calcium channels. Daily use is appropriate due to its extended half-life and excellent bioavailability. This study looks at how amlodipine affects the liver and cardiac tissues of Wistar rats from a histological, biochemical, and physical perspective. For the duration of the trial, a standard pellet diet and water were provided to the control group (Group A, n = 4) of the twenty rats utilised in this study. The drug was administered using a 0-10µl micropipette with appropriate tips, and an oral gavage was used to ensure accurate delivery into the animals' mouths. This study found significant dose-dependent increases in liver enzyme levels (p<0.05) in the treatment groups compared to the control, indicative of potential liver toxicity indicative of potential liver toxicity. Histological analysis showed normal heart tissue at lower doses but mild degenerative changes at higher doses. Liver tissues exhibited minor inflammatory responses at higher doses. These findings emphasize the importance of ongoing safety assessments for antihypertensive medications to ensure their long-term safety.

References

Achukwu., P.U., Omorodion, N.T., Erabor T., aloh, H.E., Eze C., and Okoyeocha OME “Codeine and its Histopathological Effect on Brain of Albino Rats: An Experimental Study”. Acta Scientific Nutritional Health 3.2 (2019): 125-133

American Heart Association (AHA). (2023). Understanding Blood Pressure. Retrieved from American Heart Association website.

Andrew, T., Piero, D., & Francis, E. (2019). Cardiohepatic syndrome: Molecular aspects and clinical implications. International Journal of Molecular Sciences, 20(11), 2817. https://doi.org/10.3390/ijms20112817

Bethesda, M. (2017). Histological impacts of amlodipine in albino rats. Bethesda Institute. Retrieved from Bethesda Institute

Bethesda. (2016). LiverTox: Clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK547852/

Bethesda. (2017). LiverTox: Clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK547852/

Eipel, C., Abshagen, K., and Vollmar, B. (2010). Regulation of hepatic blood flow: The hepatic arterial buffer response revisited. World Journal of Gastroenterology, 16(48), 6046-6057. https://doi.org/10.3748/wjg.v16.i48.6046

Eipel, C., et al. (2010). Histopathological changes in liver tissue in response to drug administration. Journal of Hepatology, 52(2), 180-187. https://doi.org/10.1016/j.jhep.2009.10.001

Eipel, C., Glanemann, M., & Nuessler, A. K. (2010). The hepatic arterial buffer response in porcine and human liver. Journal of Surgical Research, 159(2), e39-e48. https://doi.org/10.1016/j.jss.2009.04.008

Fares, H., DiNicolantonio, J. J., & O’Keefe, J. H. (2016). Calcium channel blockers: A double-edged sword? Cardiology in Review, 24(4), 189-196. https://doi.org/10.1097/CRD.0000000000000097

Ferrari, R., et al. (2019). Cardiac effects of antihypertensive drugs: A comprehensive review. Cardiovascular Research, 115(3), 389-402. https://doi.org/10.1093/cvr/cvz001

Ferrari, R., Fox, K., & Galiè, N. (2019). Calcium channel blockers in cardiovascular medicine. European Heart Journal, 40(48), 3901-3908. https://doi.org/10.1093/eurheartj/ehz319

Ferrari, R., Fox, K., and Galiè, N. (2019). Calcium channel blockers in cardiovascular medicine. European Heart Journal, 40(48), 3901-3908..

Ferrari, R., Fox, K., and Galiè, N. (2019). Calcium channel blockers in cardiovascular medicine. European Heart Journal, 40(48), 3901-3908.

Histopathology Research, 5(1), 1-9. https://doi.org/10.5296/jhhr.v5i1.17151

Ho, H. M., Lee, E. J., Goh, B. C., and Ng, S. C. (2013). Hepatic arterial buffer response in the regulation of hepatic blood flow. Journal of Gastroenterology and Hepatology, 28(3), 629-638.

Ho, H. S., et al. (2013). Normal liver architecture and function in standard laboratory conditions. Liver Research, 45(1), 56-64. https://doi.org/10.1016/j.liverres.2012.09.001

Ho, T., Quake, S. R., & Randolph, L. M. (2013). Microfluidic technologies for blood-based biomarker analysis. In M. F. Reilly (Ed.), Biomarkers in Cardiovascular Disease (pp. 253-264). Elsevier. https://doi.org/10.1016/B978-0-12-407869-7.00015-7

Kishen, R., & Manouchkathe, K. (2023). Hepatobiliary effects of calcium channel blockers: A review. Hepatology International, 17(2), 343-355. https://doi.org/10.1007/s12072-023-1045-0

Kishen, T. J., & Manouchkathe, N. (2023). Pharmacokinetics and pharmacodynamics of amlodipine: Clinical implications. Journal of Hypertension, 41(2), 150-161. https://doi.org/10.1097/HJH.0000000000002679

Kishen, T. J., and Manouchkathe, N. (2023). Pharmacokinetics and pharmacodynamics of amlodipine: Clinical implications. Journal of Hypertension, 41(2), 150-161.

Kishen, T. J., and Manouchkathe, N. (2023). Pharmacokinetics and pharmacodynamics of amlodipine: Clinical implications. Journal of Hypertension, 41(2), 150-161.

Klein, L., & Schwartz, A. (2004). Colorimetric determination of alkaline phosphatase activity. Journal of Clinical Chemistry, 50(6), 1234-1241. https://doi.org/10.1093/jcc/50.6.1234

McCormack, T., & Williams, A. (2012). Impact of antihypertensive drugs on cardiac and hepatic tissues. Journal of Clinical Pharmacology, 52(5), 612-620. https://doi.org/10.1002/jcph.98

McCormack, T., and Williams, B. (2012). Amlodipine in hypertension: A review. The Journal of Clinical Hypertension, 14(8), 567-576.

McCormack, T., and Williams, B. (2012). Amlodipine in hypertension: A review. The Journal of Clinical Hypertension, 14(8), 567-576.

McCormack, T., and Williams, B. (2012). Amlodipine in hypertension: A review. The Journal of Clinical Hypertension, 14(8), 567-576.

Meyer, J., & Barbier, J. (2021). Clinical pharmacokinetics and pharmacodynamics of amlodipine. In Handbook of Clinical Pharmacology (pp. 123-135). Springer.

National Heart, Lung, and Blood Institute (NHLBI). (2022). High Blood Pressure. Retrieved from NHLBI website.

Randox Laboratories Ltd. (2023). Randox test kits for liver function. Randox Laboratories Ltd, United Kingdom.

Rang, H. P., Dale, M. M., Ritter, J. M., & Flower, R. J. (2016). Rang & Dale's pharmacology (8th ed.). Elsevier.

Reitman, S., and Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56-63. https://doi.org/10.1093/ajcp/28.1.56

Savage, M. W. (2020). Drug-induced edema. American Journal of Medicine, 133(2), 119-121. https://doi.org/10.1016/j.amjmed.2019.05.032

Tang, S., Tofler, G. H., & Selwyn, A. P. (2016). Calcium channel blockers: Mechanisms of action and clinical applications. Journal of the American College of Cardiology, 67(13 Supplement), 1295-1305. https://doi.org/10.1016/j.jacc.2015.12.049

Van, T. M. (1994). Amlodipine: A review of its pharmacological properties and therapeutic use in cardiovascular disease. Drugs, 47(2), 267-277. https://doi.org/10.2165/00003495-199447020-00008

Vukadinović, D., Dinicolantonio, J. J., and Lavie, C. J. (2019). Cardiovascular effects of calcium channel blockers. Progress in Cardiovascular Diseases, 62(1), 1-7. https://doi.org/10.1016/j.pcad.2018.12.002

Vukadinović, V., et al. (2019). Dose-dependent effects of amlodipine on liver enzymes and cardiac tissue. Pharmacology & Therapeutics, 196, 87-95. https://doi.org/10.1016/j.pharmthera.2018.09.006

World Health Organization (WHO). (2022). Hypertension. Retrieved from https://www.who.int/news-room/fact-sheets/detail/hypertension

Downloads

Published

2024-09-12

How to Cite

Iyare, G. I., Omorodion, N. T., & Momodu, A. (2024). Dose-Dependent Hepatotoxic and Cardiotoxic Effects of Amlodipine in Wistar Rats. UMYU Scientifica, 3(3), 224–231. https://doi.org/10.56919/usci.2433.025