Preparation, Characterization, and Performance Optimization of Cu2ZnSnS4 (CZTS) Absorber Layer Deposited by Sol-Gel Spin Coating Technique

Authors

DOI:

https://doi.org/10.56919/usci.2541.001

Keywords:

CZTS, annealing;, wurtzite;, Kesterite;, XRD, Raman Spectroscopy

Abstract

Study’s Excerpt:

  • This study investigates CZTS thin films on uncoated soda lime glass.
  • The kesterite phase and secondary phases were confirmed through XRD and Raman spectroscopy.
  • UV-Vis analysis revealed high optical transmittance that exceeded 90% in some samples.
  • Variations in optical energy gap with film thickness and annealing indicate tunable properties for electronic and optoelectronic applications.
  • The findings contribute to the development of CZTS-based technologies with potential for transparent and efficient devices.

Full Abstract:

This study focuses on the deposition of thin films of copper zinc tin sulphide (CZTS) on uncoated soda lime glass (SLG) substrates, followed by comprehensive characterisations using X-ray diffraction (XRD), Raman spectroscopy, and UV-Vis spectroscopy.  The XRD and Raman results revealed the presence of kesterite CZTS and secondary phases such as SnS (TS), ZnS, and CuSnS (CTS) of the grown thin films, providing valuable insights into the crystalline structure of the samples.  UV-Vis spectroscopy demonstrated that the transmittance of some of the samples exceeded 90 % in the visible region, indicating their potential for transparent and efficient electronic and optoelectronic applications.  Furthermore, the effect of both thickness and annealing temperature on the optical energy gap () were studied.  The allowed direct optical energy gap was found to be in the range of 2.30 to 2.94 eV for the as-deposited samples and 1.82 to 2.91 eV for the annealed samples.

References

Abdullahi. S., M. Momoh, A. U. Moreh, A. M. Bayawa and A. saidu (2020). Synthesis and characterization of CZTS thin films from compound target deposited by RF sputtering method. IOP conf. Series Mater. Sci. Eng. 805. ISSN 1757-8981. https://doi.org/10.1088/1757-899X/805/1/012001

Ahmad, R., Saddiqi, N., Wu, M., Prato, M., Spiecker, E., Wolfgang Peukert, W and Distaso, M ( 2021). Phase evolution of Cu2ZnSnS4 (CZTS) nanoparticles from in situ formed binary sulphides under solvothermal conditions. Cryst. Eng .Comm, 2021, 23, 7944-7954. https://doi.org/10.1039/D0CE01566K

Ahmadi, S., Khemiri, N., Cantarero, A., & Kanzari, M. (2022). XPS analysis and structural characterization of CZTS thin films deposited by one-step thermal evaporation. Journal of Alloys and Compounds, 925, 166520, ISSN 0925-8388, Elsevier BV, https://doi.org/10.1016/j.jallcom.2022.166520

Ahmed, Z., Bouchaib, H., Hicham, L., Youssef, D., HervÈ JoÎl Tchognia, N., Youssef, N., Salah, F., Abdelkrim, B., Mounia, T., Abderraouf, R and Philippe, T (2022). Investigation of CZTS absorber layer deposited by spin coating technique for photovoltaic applications. Materials Today: Proceedings, 53, 355-360, ISSN 2214-7853, Elsevier BV. https://doi.org/10.1016/j.matpr.2022.01.369

Aksoy, S., Caglar, Y., Ilican, S., Caglar, M (2009). Effect of heat treatment on physical properties of CdO films deposited by sol-gel method. International Journal of Hydrogen Energy, 34 (12), 5191-5195. https://doi.org/10.1016/j.ijhydene.2008.09.057.

Alkhalifah, M., El Radaf, I.M., & El-Bana, M.S. (2020). New window layer of Cu2CdSn3S8 for thin film solar cells. Journal of Alloys and Compounds, 813, 152169. https://doi.org/10.1016/j.jallcom.2019.152169

El Radaf, I. M (2020). Dispersion parameters, linear and nonlinear optical analysis of the SnSb2S4 thin films. Applied Physics A (2020) 126:357, 1-10. https://doi.org/10.1007/s00339-020-03543-0.

Al Zahrani, H. Y. S (2020). Synthesis, optical and optoelectrical analysis of the Cu2CoSnS4 thin films as an absorber layer for thin film solar cells. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-020-03252-7

Balaji, G., Prabavathy, N., Balasundaraprabhu, R., Prasanna, S., Echeverria, E., McIlroy, D. N., Sivakumaran, K., Kannan, M. D., Velauthapillai, D (2020). Investigations on post sulphurised Cu2ZnSnS4 absorber layer thin films prepared using radio frequency magnetron sputtering, Thin Solid Films, Volume 695, https://doi.org/10.1016/j.tsf.2019.137764.

Barragan, A. A., Malekpour, H., Exarhos, S., Balandin, A. A and Mangolini, L (2016). Grain-to-grain compositional variations and phase segregation in CZTS films ACS Appl. Mater. Interfaces, Just Accepted Manuscript

Behera, N and Mohan, B (2019). The phase optimization, optical and electrical properties of kesterite Cu2ZnSnS4thin film prepared by single target RF magnetron sputtering technique for solar cell application. Mater. Res. Express 6126457. https://doi.org/10.1088/2053-1591/ab5e39

Chander, S., Tripathi, S. K., Kaur, I and Arijit, K. De (2024). Non-toxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods, Materials Today Sustainability, 25, 100662. https://doi.org/10.1016/j.mtsust.2023.100662

Demir, K.C (2021). The investigation of the corrosion behaviour of CZTS thin films prepared via electrodeposition. Materials Science in Semiconductor Processing, Elsevier. https://doi.org/10.1016/j.mssp.2020.105553

Diwate, K., Mohite, K., Shinde, M., Rondiya, S., Pawbake, A., Date, A., Pathan, H and Jadkar, S. (2017). Synthesis and Characterization of Chemical Spray Pyrolysed CZTS Thin Films for Solar Cell Applications. Energy Procedia. 110. 180-187. https://doi.org/10.1016/j.egypro.2017.03.125

Dong, M., Wei, L and Zhu, Y (2023). Controllability study of copper-tin-sulphide (Cu3SnS4) material based on the ratio adjustment of Cu to Sn elements. Micro & Nano Letters 18 (9-12) e12176. https://doi.org/10.1049/mna2.12176

El Mahboub, E., El Khouja, O., Bocirnea, A. E., Zakaria, S., Galca, A. C., Mansori, M and Hichou, A (2024). Investigation of kesterite to stannite phase transition and band gap engineering in Cu2Zn1-xCoxSnS4 thin films prepared by sol-gel spin coating, Applied Surface Science, 672. https://doi.org/10.1016/j.apsusc.2024.160848

El Radaf, I. M (2020). Dispersion parameters, linear and nonlinear optical analysis of the SnSb2S4 thin films. Applied Physics A. 126:357, 1-10. DOI: https://doi.org/10.1007/s00339-020-03543-0

Ezealigo, B. N., Nwanya, A. C., Simo, A., Osuji, R.U., Bucher, R., Maaza, M and Ezema, F. I. (2017). Optical and electrochemical capacitive properties of copper (I) Iodide thin film deposited by SILAR method. Arabian Journal of Chemistry. http://dx.doi.org/10.1016/j.arabjc.2017.01.008.

Feng, J., Huang, X., Chen, W., Wu, J., Lin, H., Cheng, Q and Zhang, F. (2016). Fabrication and characterization of Cu2ZnSnS4 thin films for photovoltaic application by low-cost single target sputtering process. Vacuum, 126 84–90. http://doi.org/10.1016/j.vacuum.2016.01.023

Gadallah, A.-S., Salim, M. A., Atwee, T., & Ghander, A. M. (2018). Effect of Al doping on structural, morphological, optical, and electrical properties of Cu₂ZnSnS₄ thin films prepared by sol-gel spin coating. Optik, 159, 275–282. https://doi.org/10.1016/j.ijleo.2018.01.086

Gansukh, M., López Mariño, S., Espindola Rodriguez, M., Engberg, S. L. J., Martinho, F. M. A., Hajijafarassar, A., and Canulescu, S. (2020). Oxide route for production of Cu₂ZnSnS₄ solar cells by pulsed laser deposition. Solar Energy Materials and Solar Cells, 215, 110605. https://doi.org/10.1016/j.solmat.2020.110605

Gezgin, Y., Houimi, A., Mercimek, B and Kiliç, H. S (2020). The Effect of CZTS Ultrathin Film Thickness on the Electrical Characteristic of CZTS/Si Heterojunction Solar Cells in the Darkness and under the Illumination Conditions. Silicon, 1-13. https://doi.org/10.1007/s12633-020-00847-x

Gupta, A. S. K., Farhad, S. F. U., Habib, M. S., Hossan, M. R., Hossain, K., Das, N. K., Quamruzzaman, M., Matin, M. and Amin, N (2023). Characterizations of extrinsically doped CZTS thin films for solar cell absorbers fabricated by sol-gel spin coating method. Applied Surface Science Advances. 13, 1-12. https://doi.org/10.1016/j.apsadv.2022.100352.

Hameed, S. A., Bakr, N. A., Hassan, A. M and Jasim, A. M (2020). Structural and Optical Properties of Cu2ZnSnS4 Thin Films Fabricated by Chemical Spray. AIP Conference Proceedings 2213, 020082; https://doi.org/10.1063/5.0000310

Hassanien, A. S and Akl, A. A (2019). Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering 2 technique at different flow rates of the reactive oxygen gas, Physica B: Physics of Condensed Matter, https://doi.org/10.1016/j.physb.2019.411718

Islam, M. A., Aziz, A., Witjaksono, G and Amin, N. (2013). Structural, Electrical and Optical Properties of Zn Rich CZTS Thin Film, 90–93. Unpublished. 23-30. https://doi.org/10.1109/SCOReD.2013.7002549

Jagdish, P., Jagavendra, Y., Sunil, K., Hansraj, S and Mangej, S (2023). Impact of Sb Incorporation on the Structural and Optical Properties of CZTS Thin Films Grown by Spin Coating Technique. Oriental Journal Of Chemistry, 39(3), 596-603, ISSN 2231-5039, Oriental Scientific Publishing Company. https://doi.org/10.13005/ojc/390308

Khushaim, M., Alamri, S., Kattan, N., Jaber, A and Alamri, S (2021). Study of kesterite Cu2ZnSnS4 (CZTS) thin films deposited by spray technique for photovoltaic applications, Journal of Taibah University for Science, 15:1, 329-339, DOI: 10.1080/16583655.2021.1978809

Kwak, J. I., Nam, S. H., Kim, L., & An, Y. J. (2020). Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of Hazardous Materials, 392, 122297. ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2020.122297

Ma, C., Lu, X., Xu, B., Zhao, F., An, X., Li, B, Sun, L., Jiang, J., Chen, Y and Chu, J. (2019). Effects of sputtering parameters on photoelectric properties of AZO film for CZTS solar cell. Journal of Alloys and Compounds, 774, 201-2. doi: https://doi.org/10.1016/j.jallcom.2018.09.056

Maheshwari, B. U., & Kumar, V. S. (2015). Phase transformation of solution‐based p‐type Cu2ZnSnS4 thin film: applicable for solar cell. International Journal of Energy Research, 39(6), 771-777. https://doi.org/10.1002/er.3281

Moon, Md. M. A., Rahman, Md. F., Hossain, J., & Ismail, A. B. Md. (2019). Comparative Study of the Second Generation a-Si:H, CdTe, and CIGS Thin-Film Solar Cells. Advanced Materials Research, 1154, 102–111. https://doi.org/10.4028/www.scientific.net/amr.1154.102

Munir, B., Prastyo, B. E., Nurjaya, M. N., Muslih, E. Y., and Alfauzan, S. K (2016). High crystalline Cu2ZnSnS4 semiconductor prepared from low toxicity ethanol-based precursors. International Conference on Engineering, Science and Nanotechnology 2 1788, 030022 (2017). https://doi.org/10.1063/1.4968275

Olalekan C. Olatunde, Damian C. Onwudiwe, (2021). Stoichiometric phases and mechanism of crystal phase selectivity of copper-based ternary sulphides. Materials Science in Semiconductor Processing,125. https://doi.org/10.1016/j.mssp.2020.105627.

Olgar, M. A., A. Seyhan., A. O. Sarp., and R. Zan (2020). Impact of sulfurization parameters on properties of CZTS thin films grown using quaternary target. J Mater Sci: Mater Electron, https://doi.org/10.1007/s10854-020-04582-2

Orletskyi, M.M., Solovan, V.V., Brus, F., Pinna, G., Cicero, P.D., Maryanchuk, E.V., Maistruk, M.I., Ilashchuk, T.I., Boichuk and Tresso, E (2016). Structural, optical and electrical properties of Cu2ZnSnS4 films prepared from a non-toxic DMSO-based sol-gel and synthesized in low vacuum, Journal of Physical and Chemistry of Solids, http://dx.doi.org/10.1016/j.jpcs.2016.09.015

Park, J., Yoo, H., Karade, V., Gour, K. S., Choi, E., Kim, M Hao, X., Shin, S. J., Kim, J., Shim, H., Kim, D., Kim, J. H., Yun, J and Kim, J. H (2020). Investigation of low-intensity light performances of kesterite CZTSe, CZTSSe, and CZTS thin film solar cells for indoor applications. J. Mater. Chem. A, 1-7. https://doi.org/10.1039/D0TA04863A

Paul, R., Shukla, S., Lenka, T.R. (2024). Recent progress in CZTS (CuZnSn sulfide) thin-film solar cells: a review. J Mater Sci: Mater Electron 35, 226. https://doi.org/10.1007/s10854-024-11983-0

Prabeesh, P., Sajeesh, V. G., Selvam, I. P., Bharati, M. D., Rao, G. M., and Potty, S. N. (2020). CZTS solar cell with non-toxic buffer layer: A study on the sulphurization temperature and absorber layer thickness. Solar Energy, 207, 419-427. https://doi.org/10.1016/j.solener.2020.06.103

Rabeh, M., Ben, T. R and Kanzari, M. (2013). Substrate Temperature Effects on Structural Optical and Electrical Properties of Vacuum Evaporated Cu2ZnSnS4 Thin Films. International Journal of Engineering Practical Research, 2 (2), 71–76.

Rahman, M. A and Khan, M. K. R (2014). Effect of annealing temperature on structural, electrical and optical properties of spray pyrolytic nanocrystalline CdO thin films. Materials Science in Semiconductor Processing 24, 26–33. https://doi.org/10.1016/j.mssp.2014.03.002

Sadanand, S., Lohia, P and Dwivedi, D. K (2020). Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer, Solar Energy, 204, 748-760. https://doi.org/10.1016/j.solener.2020.05.033.

Saiful Islam, M., Doroody, C., Kiong, T. S., Za abar, F. I., Bahrudin, M., Rahman, K. S., Kar, Y. B and Zuhdi, A. W. M (2024). A comprehensive modeling on MoS2 interface and defect engineering in CZTS thin film solar cells. Journal of Materials Research and Technology. 33, 6601-6609. https://doi.org/10.1016/j.jmrt.2024.11.016

Salunkhe, R. R., Dhawale D. S., Gujar, T. P., Lokhande, C. D (2009). Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect. Materials Research Bulletin, 44 (2), 364-368, https://doi.org/10.1016/j.materresbull.2008.05.010

Sanchez, T. G., Mathew, X., and Mathews, N. R. (2016). Obtaining phase-pure CZTS thin films by annealing vacuum evaporated CuS/ZnS stack. Journal of Crystal Growth, 445, 15-23. http://doi.org/10.1016/j.jcrysgro.2016.03.039

Stamford, L and Azapagic, A (2019). Environmental impacts of copper‑indium‑gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition, Science of The Total Environment, 688, 1092-1101. https://doi.org/10.1016/j.scitotenv.2019.06.343.

Sultana, M., Siddika, A., Mahmood, S. S., Sharmin, A., Tabassum, S., Rahman, M., and Bashar, M. S (2022). Fabrication of CZTS thin films by ultrasonic spray pyrolysis at a low substrate temperature and effect of tin concentration on the characteristics of the CZTS thin films. Bangladesh Journal of Scientific and Industrial Research, 57(1), 1-6, ISSN 2224-7157, Bangladesh Journals Online (JOL), https://doi.org/10.3329/bjsir.v57i1.58894

Yang, Y., Ding, Y., Zhang, J., Liang, N., Long, L., and Liu, J (2022). Insight into the Growth Mechanism of Mixed Phase CZTS and the Photocatalytic Performance. Nanomaterials, 12, 1439. https://doi.org/10.3390/nano12091439

Yeh, Min-Yen., Po-Hsun Lei., shao-Hsein and Chyi-da, Yang (2016). Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology. Materials. 9 (526), 1-12. https://doi.org/10.3390/ma9070526

Zhang, C., Mahadevan, S., Yuan, J., Ho, J. K. W., Gao, Y., Liu, W., ... & So, S. K. (2022). Unraveling Urbach tail effects in high-performance organic photovoltaics: dynamic vs static disorder. ACS Energy Letters, 7(6), 1971-1979. https://doi.org/10.1021/acsenergylett.2c00816

Zhou, S., Tan, R., Jiang, X., Shen, X., Xu, W., and Song, W. (2013). Growth of CZTS thin films by sulfurization of sputtered single-layered Cu-Zn-Sn metallic precursors from an alloy target. Journal of Materials Science: Materials in Electronics, 24 (12), 4958–4963. http://doi.org/10.1007/s10854-013-1507-5

Ziti, A., Hartiti, B., Labrim, H., Fadili, S., Ridah, A., Belhorma, B., Tahri, M. & Thevenin, P. (2018). Study of kesterite CZTS thin films deposited by spin coating technique for photovoltaic applications. Superlattices and Microstructures, 127, 191-200. https://doi.org/10.1016/j.spmi.2017.11.023

Downloads

Published

2025-02-07

How to Cite

Abdullahi, S., Momoh, M., Moreh, A. U., & Wara, A. M. (2025). Preparation, Characterization, and Performance Optimization of Cu2ZnSnS4 (CZTS) Absorber Layer Deposited by Sol-Gel Spin Coating Technique. UMYU Scientifica, 4(1), 1–18. https://doi.org/10.56919/usci.2541.001