Characterization and Delineation of Aquifer Potential Zones in Basement Terrain in Parts of Mani Town, Katsina State, Nigeria
DOI:
https://doi.org/10.56919/usci.2541.013Keywords:
Aquifer characteristics, Basement terrain, Hydraulic conductivity, Mani area, TransmissivityAbstract
Study’s Excerpt:
- Groundwater demand will strain reservoirs due to climate change and frequent droughts.
- A Vertical Electrical Resistivity (VES) survey identified aquifer potential zones.
- Five model curve types were generated, with H-type dominant.
- Aquifer units showed low to moderate potential.
- The geophysical approach proved highly effective for groundwater exploration.
Full Abstract:
Aquifer characteristics play a major role in the identification of potential zones. A geophysical investigation was carried out to characterize aquifer parameters and identify potential zones in Mani town of Katsina state utilizing Vertical Electrical Resistivity (VES) techniques. Aquifer parameters: aquifer resistivity, aquifer thickness, aquifer depth, transverse resistance, hydraulic conductivity, and transmissivity were evaluated in order to characterize and delineate aquifer potential zones for water supply. A total of 21 VES was carried out using the Schlumberger electrode array. Five model curve types were generated with the percentage distribution in the order of H > A > QH > HA > AK for the modeled curve types. The aquifer layer was identified mostly along the third layer with resistivity values ranging from 34.08 to 331 Ώm, and aquifer thickness ranged from 4.37 m to 19.5 m, with depth to the aquifer ranging from 30.2 to 54.8 m. The transverse resistance (R) of the study area ranged from 274.07 to 5343 Ωm2. Hydraulic conductivity ranged from 1.724 – 14.371 m/day with an average value of 4.768 m/day. The transmissivity (Tr) value ranges from 9.972 – 119.854 m2/day, with an average value of 46.574 m2/day. The potentiality of the aquifer units of the study area indicated low to moderate potential zones. VES 2, 3, 4, 5, and 7 were recommended for groundwater exploration and management.
References
Abdulkadir, M., Garba, N. N., Nasiru, R., Saleh, M. A., Bello, S., & Khandaker, M. U. (2023). Statistical analysis of terrestrial gamma radiation dose rates in relation to different geological formations and soil types of Katsina State, Nigeria. International Journal of Environmental Analytical Chemistry, 103(14), 3251-3263. : https://doi.org/10.1080/03067319.2021.1905806
Adagunodo, T. A., Adeniji, A. A., Erinle, A. V., Akinwumi, S. A., Adewoyin, O. O., Joel, E. S., & Kayode, O. T. (2017). Geophysical investigation into the integrity of a reclaimed open dumpsite for civil engineering purpose. Interciencia Journal, 42(11), 324-339.
Adewumi, R., Agbasi, O., & Mayowa, A. (2023). Investigating groundwater potential in North-eastern basement complexes: A Pulka case study using geospatial and geo- electrical techniques. HydroResearch, 6, 73-88. https://doi.org/10.1016/j.hydres.2023.02.003
Akakuru, O.C., Onyeanwuna, U.B., Opara, A.I., Iheme, K.O., Njoku, A.O., Amadi, C.C., Akaolisa, C.Z. & Okwuosha, O.R. (2023). Electro geohydraulic estimation of shallow aquifer characteristics of Njaba and environs, Southeastern Nigeria. Arabian Journal of Geosciences, 16:318. https://doi.org/10.1007/s12517-023-11378-1
Akaolisa, C.C.Z., Agbasi, O., Okeke, O.C., Okechukwu, S., (2022). An assessment of the groundwater potentials of the farm with preliminary geophysical method and grain size analysis prior to the drilling of boreholes. HydroResearch 5, 85–98. https://doi.org/10.1016/j.hydres.2022.09.001.
Akingboye, A.S., Bery, A.A., Kayode, J.S., Ogunyele, A.C., Adeola, A.O., Omojola, O.O. & Adesida, A.S. (2022). Groundwater yielding capacity, water–rock interaction, and vulnerability assessment of typical gneissic hydrogeologic units using geoelectrohydraulic method. ActaGeophysica, 71: 697 - 721. https://doi.org/10.1007/s11600-022-00930-4
Ankidawa, B. A., Omepa, C., Seli, A. B., Kabiru, M. W., Dennis, Y. B., Vanke, I., & Ibrahim, S. (2023). Delineation of Groundwater Potentials Using Dar Zarrouk Parameters in Otukpo and Environs, Benue State, Nigeria. Nigerian Journal of Engineering Science and Technology Research, 9(1), 105-124.
Baig, F., Sherif, M., Sefelnasr, A., & Faiz, M. A. (2023). Groundwater vulnerability to contamination in the gulf cooperation council region: A review. Groundwater for Sustainable Development, 101023. https://doi.org/10.1016/j.gsd.2023.101023
Bala, A.N. & Ike, E.C. (2001). The aquifer of the crystalline basement rocks in Gusau area, North-western Nigeria. J. Min. Geol. 37(2), 177-184.
Dong, D. E., Ankidawa, B. A., Obiefuna, G. I., Seli, A. B., & Kwami, I. A. (2024). Delineation of groundwater potential using resistivity method of Yola South, North- eastern Nigeria. Nigerian Journal of Engineering Science and Technology Research, 10(1), 185-200.
Faleye, E. T., & Olorunfemi, M. O. (2015). Aquifer characterization and groundwater potential assessment of the sedimentary basin of Ondo state. Ife Journal of Science, 17(2), 429-439.
Falowo, O. O. (2022). Modeling of hydrogeological parameters and aquifer vulnerability assessment for groundwater resource potentiality prediction at Ita Ogbolu, Southwestern Nigeria. Modeling Earth Systems and Environment, 9(1), 749-769. https://doi.org/10.1007/s40808-022-01490-8
Falowo, O. O., Akindureni, Y., & Babalola, O. C. (2023). Aquifer systems characterization for groundwater management in Ile-Oluji, Southwestern Nigeria, using MCDA GIS- based AHP. Malaysian Journal of Geosciences, 7(2) 96-105. http://doi.org/10.26480/mjg.02.2023.96.105
George, N.J., Ibuot, J.C., Ekanem, A.M., George, A.M. (2018) Estimating the indices of inter-transmissibility magnitude of active surfcial hydrogeologic units in itu, akwa ibom state, southern Nigeria. Arab J Geosci. https://doi.org/10.1007/s12517-018-3475-9
Gheorghe, A. (1978). Processing and synthesis of hydrogeological data. Abacus press, Tunbridge wells, Kent. 265.
George, N.J., Ibuot, J.C., Ekanem, A.M., George, A.M. (2018) Estimating the indices of inter-transmissibility magnitude of active surfcial hydrogeologic units in itu, akwa ibom state, southern Nigeria. Arab J Geosci. https://doi.org/10.1007/s12517-018- 3475-9
Heigold, P. C., Gilkeson, R. H., Cartwright, K. & Reed, P. C. (1979). Aquifer transmissivity from surficial electrical methods. Groundwater 17(4), 338–345. https://doi.org/10.1111/j.1745-6584.1979.tb03326.x
Idowu, I. O., & Ojo, A. O. (2024). Exploring groundwater resources in Southwestern Nigeria: An integrated geophysical approach. HydroResearch, 7, 213-224. https://doi.org/10.1016/J.hydres.2024.04.002
Inkani, A. I. (2015). Households’ vulnerability and adaptation to water scarcity in rural areas Katsina state, Nigeria (Doctoral dissertation, University of Nairobi).
Kasidi, S., & Victor, V. (2019). Groundwater Exploration Using Vertical Electrical Sounding (VES) Method in Musawa and Environs of Katsina State, Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 7(6), 73-83. https://doi.org/10.9790/0990- 0706027383
Li, K., Yan, J., Li, F., Lu, K., Yu, Y., Li, Y., ... & Wang, J. (2024). Non-invasive geophysical methods for monitoring the shallow aquifer based on time-lapse electrical resistivity tomography, magnetic resonance sounding, and spontaneous potential methods. Scientific Reports, 14(1), 7320. https://doi.org/10.1038/s41598-024-58062-2
Lukac Reberski, J., Rubinic, J., Terzic, J., Radiˇsic, M., (2020). Climate change impacts on
groundwater resources in the coastal karstic adriatic area: a case study from the Dinaric karst. Nat. Resour. Res. 29 (3), 1975–1988. https://doi.org/10.1007/s11053- 019-09558-6.
Mogaji, K.A., Lim, H.S., Abdullah, K., (2015). Modelling of groundwater recharge using
a multiple linear regression (MLR) recharge model developed from geophysical parameters: a case of groundwater resources management. Environmental Earth Sciences. http://dx.doi.org/10.1007/s12665-014-3476-2
Mogaji, K. A. (2016a). Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability. Journal of Taibah University for Science, 10(4), 584-600. https://doi.org/10.1016/j.jtusci.2015.12.006
Mogaji, K.A., (2016b). Combining geophysical techniques and multi-criteria GIS-based application modelling approach for groundwater potential assessment in South- western Nigeria. Environ. Earth Sci. 75, 1181. http://dx.doi.org/10.1007/s12665-016- 5897-6.
Mogaji, K. A., & Omobude, O. B. (2017). Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria–A GIS-based GODT approach. NRIAG Journal of Astronomy and Geophysics, 6(2), 434-451. https://dx.doi.org/10.1016/j.nrjag.2017.07.001
Mukhtar, F., Saulawa, U. A., & Mukhtar, G. L. (2016). A Survey of Salmonella Species and their Antibiotic Susceptibility Profile from Selected Wells in Katsina State, Nigeria. UMYU Journal of Microbiology Research (UJMR), 1(1), 129-136. https://doi.org/10.47430/ujmr.1611.017
Musa, K. O., Obasi, I. A., Auduson, A. E., Jatto, S. S., Akudo, E. O., Akpah, F., & Jimoh, J. B. (2023). Integrating geoelectrical and borehole data in the characterization of basement-rock aquifers in the Lokoja area, northcentral Nigeria. Geosystems and Geoenvironment, 2(4), 100217. https://doi.org/10.1016/j.geogeo.2023.100217
Obasi, I. A., Onwa, N. M., & Igwe, E. O. (2021). Application of the resistivity method in characterizing fractured aquifer in sedimentary rocks in Abakaliki area, southern Benue Trough, Nigeria. Environ Earth Sci 80, 24. https://doi.org/10.1007/s12665- 020-09303-w
Ojoawo, A. I., & Adagunodo, T. A. (2023). Groundwater occurrence and flow in varying geological formations. In IOP Conference Series: Earth and Environmental Science (Vol. 1197, No. 1, p. 012009). IOP Publishing. https://doi.org/10.1088/1755/1315/1197/1/012009.
Olayanju, G. M., Mogaji, K. A., Lim, H. S., & Ojo, T. S. (2017). Foundation integrity assessment using integrated geophysical and geotechnical techniques: case study in crystalline basement complex, southwestern Nigeria. Journal of Geophysics and Engineering, 14(3), 675-690. https://doi.org/10.1088/1742-2140/aa64f7
Orellana E, Mooney H. M. (1996) Master table and curves for vertical electrical sounding over layered structures. Interciencia, Spain.
Satpathy, B. N., & Kanungo, D. N. (1976). Groundwater exploration in hard‐rock terrain—A Case history. Geophysical prospecting, 24(4), 725-736. https://doi.org/10.1111/j.1365-2478.1976.tb01569.x
Sherif, M., Abrar, M., Baig, F., Kabeer, S., (2023). Gulf Cooperation Council countries’ water and climate research to strengthen UN’s SDGs 6 and 13. Heliyon 9 (3). https://doi.org/10.1016/j.heliyon.2023.e14584.
Stober I, Bucher K (2015) Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fuid-rock interaction in crystalline basement rocks. Geofluids 15(1–2):161–178. https://doi.org/10.1111/gf.12104
Tyagi, A., & Haritash, A. K. (2024). Geophysical electrical survey for aquifer detection, and carbon footprinting for groundwater abstraction in India. Rend. Fis. Acc. Lincei 35, 263–272. https://doi.org/10.1007/s12210-024-01227-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mudassir Hassan, Tasi'u Yalwa Rilwanu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.