The Effects of Pesticide Application on Soil Microbiota and Weed Dynamics in Cowpea Cropping Systems
DOI:
https://doi.org/10.56919/usci.2541.015Keywords:
Cowpea, Pesticides, Soil, Bacteria, Fungi and WeedsAbstract
Study’s Excerpt:
• This study reveals how pesticide combinations affect soil microbes and weed growth.
• Microbial analysis used pour plating and biochemical techniques while Visual assessment was employed in weed for accuracy.
• Dimethoate reduced microbes, while A+B at moderate doses increased them and weeds.
• Dimethoate had a strong negative impact on microbes, while Lambda-Cyhalothrin showed a mild positive effect.
• The study highlights the need for targeted pesticide use to protect soil biodiversity.
Full Abstract:
Soil is a critical habitat for diverse microorganisms and plants, pivotal in nutrient cycling, organic matter decomposition, and overall ecosystem productivity. However, agricultural practices often involve the use of pesticides to manage pests and increase crop yield, which can significantly impact soil biodiversity and health. Pesticides such as dimethoate (an organophosphate insecticide) and lambda-cyhalothrin (a synthetic pyrethroid) are commonly used in farming to control insects and pests that threaten crops like cowpea (Vigna unguiculata). This study investigates the impact of Dimethoate (A), Lambda-Cyhalothrin (B), and their combination (A+B) on soil microbial and weed populations. Soil samples were sourced from BIODEC Katsina and cowpea seeds were obtained from IITA, Kano office, Nigeria. Microbial enumeration and identification were performed using standard pour plating and biochemical techniques. Results showed pesticide concentrations influenced microbial populations, with A+B at 40 mL/L yielding the highest bacterial (39.75 CFU/g) and fungal (34 CFU/g) counts. Dimethoate alone at 50 mL/L resulted in the lowest bacterial (7.25 CFU/g) and fungal (8 CFU/g) counts. Synergistic effects were observed with A+B, promoting microbial proliferation and weed growth at moderate concentrations. Correlation analysis revealed a strong negative relationship between Dimethoate and microbial populations (r = -0.921, p < 0.001) and a positive correlation for Lambda-Cyhalothrin (r = 0.731, p < 0.01). The findings highlight the potential of pesticide combinations to alter soil microbial dynamics and weed populations. Judicious and selective use of pesticides to target pests while preserving beneficial soil organisms is recommended.
References
Abbas, T., Zahir, Z. A., Naveed, M. and Kremer, R. J. (2018). Limitations of existing weed control practices necessitate the development of alternative techniques based on biological approaches. Advances in Agronomy, 147, 239-280. https://doi.org/10.1016/bs.agron.2017.10.005
Abdulsalam, Z. B., Eniola, K. I. T. and Awe, S. (2023). Isolation, characterization and screening of potential lambda-cyhalothrin-degrading bacteria from cultivated soil in Moro, Kwara state, Nigeria. Journal of Biochemistry, Microbiology and Biotechnology, 11(1), 22-25. https://doi.org/10.54987/jobimb.v11i1.801
Ahmad, S., Pinto, A. P., Hai, F. I., Badawy, M. E.-T. I., Vazquez, R. R., Naqvi, T. A., Munis, F. H., Mahmood, T. and Chaudhary, H. J. (2022). Dimethoate residues in Pakistan and mitigation strategies through microbial degradation: a review. Environmental Science and Pollution Research, 29(34), 51367-51383. https://doi.org/10.1007/s11356-022-20933-4
Al-Haifi, K., Ahssan, M., A., Murshed, V., Ghole, S. (2006). Effect of Dimethoate Residues on Soil Micro-arthropods Population in the Valley of Zendan, Yemen, J. Appl. Sci. Environ. Mgt, 10(2): 37 – 41. https://doi.org/10.4314/jasem.v10i2.43657
Ameh, A.A. and Kawo, A. H. (2017). Enumeration, Isolation and Identification of Bacteria and Fungi from Soil Contaminated with Petroleum Products Using Layer Chicken Droppings as An Amendment. Bayero Journal of Pure and Applied Sciences, 10(1):219 – 225. https://doi.org/10.4314/bajopas.v10i1.44S
Anwar, S., Liaqat, A., Munir, A., Ashraf, M. F. and Iqbal, S. (2023). Bioaugmentation of a novel bacterial consortium in cotton-planted soil for degradation of lambda-cyhalothrin. Pedosphere. https://doi.org/10.1016/j.pedsph.2023.07.019
Baweja, P., Kumar, S. and Kumar, G. (2020). Fertilizers and pesticides: Their impact on soil health and environment. Soil health, 265-285. https://doi.org/10.1007/978-3-030-44364-1_15
Bünemann, E. K., Schwenke, G. and Van Zwieten, L. (2006). Impact of agricultural inputs on soil organisms—a review. Soil Research, 44(4), 379-406. https://doi.org/10.1071/SR05125
Cheesbrough, M. (2006). District laboratory practice in tropical countries, part 2. Cambridge university press. https://doi.org/10.1017/CBO9780511543470
Crowther, T. W., van den Hoogen, J., Wan, J., et al. (2019). The global soil community and its influence on carbon dynamics. Nature, 572(7768), 451–455. https://doi.org/10.1038/s41586-019-1346-6
Cycoń, M., Piotrowska-Seget, Z. and Kozdrój, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration & Biodegradation, 64(4), 316-323. https://doi.org/10.1016/j.ibiod.2010.03.006
Davis, A. S. and Frisvold, G. B. (2017). Are herbicides a once-in-a-century method of weed control? Pest management science, 73(11), 2209-2220. https://doi.org/10.1002/ps.4643
Fasim, F. and Uziar, B. (2019). Applications of Microorganisms in Agriculture for Nutrient Availability. Soil Microenvironment for Bioremediation and Polymer Production, 1-16. https://doi.org/10.1002/9781119592129.ch1
Fierer, N., Bradford, M. A., & Jackson, R. B. (2009). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354–1364. https://doi.org/10.1890/05-1839
Gill, H. K. and Garg, H. (2014). Pesticide: environmental impacts and management strategies. Pesticides-toxic aspects, 8(187), 10-5772.
Hanley, M. and Whiting, M. (2005). Insecticides and arable weeds: effects on germination and seedling growth. Ecotoxicology, 14, 483-490. https://doi.org/10.1007/s10646-004-1353-6
Ilunga, K. (2014). Physiological Responses of Cowpea (Vigna unguiculate L. Walp) to Water Stress under varying Water Regions. A masters Dissertation, 1-79.
Ilusanya, O., Adegboyega, T., Onajobi, I., Banjo, O., Oyeyipo, F. and Bankole, S. (2020). Impact of pesticides on soil microorganisms, physicochemical properties and cowpea (Vigna unguiculata L.) yield. Journal of Underutilized Legumes, 2(2), 1-9.
Isha., Sridevi., Rajesh L. (2022). Effect of Pesticides on Crop, Soil Microbial Flora and Determination of Pesticide Residues in Agricultural Produce: A Review. https://doi.org/10.9734/ijecc/2022/v12i121437
Jayaraj, J., Shibila, S., Ramaiah, M., Alahmadi, T. A., Alharbi, S. A., Mideen, P. K., Sakthiganesh, K. and Sivagnanam, A. (2023). Isolation and Identification of bacteria from the agricultural soil samples to tolerate pesticides dimethoate, thiamethoxam and Imidacloprid. Environmental Research Communications, 5(7), 075011. https://doi.org/10.1088/2515-7620/ace68b
Karpun, N. N., Yanushevskaya, E. B., Mikhailova, Y. V., Díaz-Torrijo, J., Krutyakov, Y. A., Gusev, A. A. and Neaman, A. (2021). Side effects of traditional pesticides on soil microbial respiration in orchards on the Russian Black Sea coast. Chemosphere, 275, 130040. https://doi.org/10.1016/j.chemosphere.2021.130040
Kalia, A., and Gosal, S. (2011). Effect of pesticide application on soil microorganisms. Archives of Agronomy and Soil Science, 57(6), 569-596. https://doi.org/10.1080/03650341003787582
Kaur, H. and Garg, H. (2014). Pesticides: Environmental Impacts and Management Strategies. InTech. https://doi.org/10.5772/57399
Kaur, H. and Garg, N. (2021). Zinc toxicity in plants: a review. Planta, 253(6), 129. https://doi.org/10.1007/s00425-021-03642-z
Khan, B. A., Nadeem, M. A., Nawaz, H., Amin, M. M., Abbasi, G. H., Nadeem, M., Ali, M., Ameen, M., Javaid, M. M. and Maqbool, R. (2023). Pesticides: impacts on agriculture productivity, environment, and management strategies. In Emerging contaminants and plants: Interactions, adaptations and remediation technologies (pp. 109-134). Springer. https://doi.org/10.1007/978-3-031-22269-6_5
Koch, L. and Ashford, N. A. (2006). Rethinking the role of information in chemicals policy: implications for TSCA and REACH. Journal of Cleaner Production, 14(1), 31-46. https://doi.org/10.1016/j.jclepro.2005.06.003
Liebman, M. and Zimdahl, R. L. (2018). Cultural techniques to manage weeds. Integrated Weed Management for Sustainable Agriculture. London: Burleigh Dodds Science Publishing, 203-226: ISBN9781351114417. https://doi.org/10.19103/AS.2017.0025.13
Mahalakshmi, V., Ng, Q., Lowson, M. and Ortiz, R. (2007). Cowpea [Vigna unguiculata (L.) Walp.] core collection defined by geographical, agronomical, and botanical descriptors. Plant Genetic Resources: Characterization and Utilization, 5(3): 113–119. https://doi.org/10.1017/S1479262107837166
Omoigui, L., Kamara, A., Kamai, N., Ekeleme, F. and Aliyu, K. (2020). Guide to cowpea production in Northern Nigeria. In: International Institute of Tropical Agriculture. 1-57, ISBN 978-978-131-368-4
Omotayo, A. E. and Okoro, G. O. (2022). Toxicity of Agricultural Pesticides to Soil Bacteria. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 14(1), 227-245. https://doi.org/10.21608/eajbsg.2022.247172
Ondráčková, E., Seidenglanz, M. and Šafář, J. (2019). Effect of seventeen pesticides on mycelial growth of Akanthomyces, Beauveria, Cordyceps and Purpureocillium strains. Czech Mycology, 7(2). https://doi.org/10.33585/cmy.71201
Petit, S., Boursault, A., Le Guilloux, M., Munier-Jolain, N. and Reboud, X. (2011). Weeds in agricultural landscapes. A review. Agronomy for sustainable development, 31, 309-317. https://doi.org/10.1051/agro/2010020
Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. and Oves, M. (2016). Bacteria and fungi can contribute to nutrient bioavailability and aggregate formation in degraded soils. Microbiological research, 183, 26-41. https://doi.org/10.1016/j.micres.2015.11.007
Riaz, U., Mehdi, S. M., Iqbal, S., Khalid, H. I., Qadir, A. A., Anum, W., Ahmad, M. and Murtaza, G. (2020). Bio-fertilizers: an eco-friendly approach for plant and soil environment. Bioremediation and biotechnology: sustainable approaches to pollution degradation, 189-213. https://doi.org/10.1007/978-3-030-35691-0_9
Shahid, M., and Khan, M. S. (2022). Ecotoxicological implications of residual pesticides to beneficial soil bacteria: a review. Pesticide Biochemistry and Physiology, 188: 105272. https://doi.org/10.1016/j.pestbp.2022.105272
Sodhozai, A. R., Bibi, S., Rabia, M., Jadoon, M., Akhtar, H. and Ali, N. (2024). From growth inhibition to ultrastructural changes: Toxicological assessment of lambda-cyhalothrin and fosetyl aluminium against Bacillus subtilis and Pseudomonas aeruginosa. Environmental Research, 252, 118958. https://doi.org/10.1016/j.envres.2024.118958
Tallapragada, S. and Lather, R. (2022). Effect of Pesticides on Crop, Soil Microbial Flora and Determination of Pesticide Residue in Agricultural Produce: A Review. International Journal of Environment and Climate Change, 12(12), 38-56. https://doi.org/10.9734/ijecc/2022/v12i121437
Tazerouni, Z., Ali A., T. and Mehran R. (2019). Cowpea: Insect Pest Management, Available online at: https://www.researchgate.net/publication/330497808 Accessed on: 18/05/2023.
Tkaczuk, C., Harasimiuk, M., Król, A. and Bereś, P. K. (2015). The effect of selected pesticides on the growth of entomopathogenic fungi Hirsutella nodulosa and Beauveria bassiana. Journal of Ecological Engineering, 16(3). https://doi.org/10.12911/22998993/2952
Van Scoy, A., Pennell, A. and Zhang, X. (2016). Environmental fate and toxicology of dimethoate. Reviews of Environmental Contamination and Toxicology Volume 237, 53-70. https://doi.org/10.1007/978-3-319-23573-8_3
Vig, K., Singh, D., Agarwal, H., Dhawan, A. and Dureja, P. (2008). Soil microorganisms in cotton fields are sequentially treated with insecticides. Ecotoxicology and Environmental Safety, 69(2), 263-276. https://doi.org/10.1016/j.ecoenv.2006.12.008
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., et al. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. https://doi.org/10.1126/science.1094875
Xiong, H., Shi, A., Mou, B., Qin, J., Motes, D., Lu, W., Ma, J., Weng, Y. and Yang, W. (2016). Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp). PLOS ONE. 11(8). https://doi.org/10.1371/journal.pone.0160941
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yusuf Muhammad Bawa, Saghir Kalimullah, Nasir Hassan Wagini

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.