DFT Investigation of Magnesium-Doped Zirconolite for High-Level Nuclear Waste Immobilization

Authors

DOI:

https://doi.org/10.56919/usci.2541.029

Keywords:

DFT, Zirconolite, Mg, High-Level-Waste, Structural and electronic properties

Abstract

Study’s Excerpt:
• A DFT method was used to investigate the structural and electronic properties of Mg-doped zirconolite.
• A Quantum ESPRESSO code was implemented for the DFT study.
• Mg-doped zirconolite showed a stable structure.
• Findings accentuate the need for further investigation into the physical and thermal properties of Mg-doped zirconolite.
Full Abstract:
The black mineral zirconolite (CaZrTi2O7), which is made up of calcium zirconium titanate, has been considered an appropriate waste form for immobilizing radioactive waste. Using Density Functional Theory (DFT), this study examined the impact of magnesium substitution on ceramic nuclear waste from Zirconolite. To explore the material's structural stability and electronic characteristics, a computational simulation was conducted using Quantum ESPRESSO within the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) and Broyden-Fletcher-Golfarb-Shannon (BFGS) relaxation calculations. From the energy range of -2.0 eV to 2.0 eV, the computed electronic band structure was displayed along the symmetry routes. An indirect band gap material with 0.06 eV was revealed by the energy gap between the valence band maximum (VBm) and the conduction band minimum (CBm) at the R2 and Γ sites. The behavior of semiconductors is consistent with this energy gap value. The dopant substitution energy effect was determined to be 1.424 eV, indicating that the Mg-doped Zirconolite's molecular structure remained stable. To sum up, doping CaZrTi2O7 ceramic may promote the production of oxygen, which enhances Magnesium's mobility to the subterranean water molecules inside the geological disposal facility.

References

Aliyu, Y., Ibrahim N., Yahaya, B., and Muhammad, A. (2024). Ab Initio Investigation of Gadolinium Zirconate Pyrochlore for Subtantial Nuclear Waste Applications. A periodical of the Faculty of Natural and Applied Sciences, UMYU, Katsina, 3(2), 180–185. https://doi.org/10.56919/usci.2432.020.

Blackburn, L. R., Sun, S. K., Lawson, S. M., Gardner, L. J., Ding, H., Corkhill, C. L., Maddrell, E. R., Stennett, M. C., & Hyatt, N. C. (2020). Synthesis and characterisation of Ca1-xCexZrTi2-2xCr2xO7: Analogue zirconolite wasteform for the immobilisation of stockpiled UK plutonium. Journal of the European Ceramic Society, 40(15), 5909–5919. https://doi.org/10.1016/j.jeurceramsoc.2020.05.066

Gonzalez Fonseca, L. G., Hedberg, M., Huan, L., Olsson, P., Retegan Vollmer, T., Fonseca, L. G. G., Hedberg, M., Vollmer, T. R., Shu, X., Huang, W., Shi, K., Chen, S. S., Zhang, S., Li, B., Wang, X., Xie, Y., Lu, X., Schreinemachers, C., Leinders, G., … Jena, H. (2021). Ahmadu Bello University Teaching Hospital Trauma Record. Journal of Nuclear Materials, 112(May), 19341. https://doi.org/10.12691/ajn-9-1-2

Hanaor, D. A. H., Assadi, M. H. N., Li, S., Yu, A., & Sorrell, C. C. (2012). Ab initio study of phase stability in doped TiO2. Computational Mechanics, 50(2), 185–194. https://doi.org/10.1007/s00466-012-0728-4

Haruna, A., Abdulkadir, I., & Idris, S. O. (2020). Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. In Heliyon (Vol. 6, Issue 1). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2020.e03237

Hurley, D. H., El-Azab, A., Bryan, M. S., Cooper, M. W. D., Dennett, C. A., Gofryk, K., He, L., Khafizov, M., Lander, G. H., Manley, M. E., Mann, J. M., Marianetti, C. A., Rickert, K., Selim, F. A., Tonks, M. R., & Wharry, J. P. (2022). Thermal Energy Transport in Oxide Nuclear Fuel. Chemical Reviews, 122(3), 3711–3762. https://doi.org/10.1021/acs.chemrev.1c00262

Ilie, A. G., Scarisoreanu, M., Dutu, E., Dumitrache, F., Banici, A. M., Fleaca, C. T., Vasile, E., & Mihailescu, I. (2018). Study of phase development and thermal stability in as synthesized TiO 2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment. Applied Surface Science, 427, 798–806. https://doi.org/10.1016/j.apsusc.2017.08.041

Jafar, M., Phapale, S. B., Nigam, S., Achary, S. N., Mishra, R., Majumder, C., & Tyagi, A. K. (2021). Implication of aliovalent cation substitution on structural and thermodynamic stability of Gd2Ti2O7: Experimental and theoretical investigations. Journal of Alloys and Compounds, 859(xxxx), 157781. https://doi.org/10.1016/j.jallcom.2020.157781

Jafar, M., Sengupta, P., Achary, S. N., & Tyagi, A. K. (2014). Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)-Sm2Ti2O7 (pyrochlore) system. Journal of the European Ceramic Society, 34(16), 4373–4381. https://doi.org/10.1016/j.jeurceramsoc.2014.07.001

Lago, D. C., Sánchez, A. D., & Prado, M. O. (2022). Cesium immobilization in porous silica and 137Cs self-heating simulations. Journal of Nuclear Materials, 565. https://doi.org/10.1016/j.jnucmat.2022.153697

Lawal, A., Shaari, A., Ahmed, R., & Taura, L. S. (2018). Investigation of excitonic states effects on optoelectronic properties of Sb2Se3 crystal for broadband photo-detector by highly accurate first-principles approach. Current Applied Physics, 18(5), 567–575. https://doi.org/10.1016/j.cap.2018.02.008

Loiseau, P., Caurant, D., Baffier, N., & Fillet, C. (2003). Structural characterization of polycrystalline (Nd,Al)-substltuted zirconolite. Materials Research Society Symposium - Proceedings, 757, 243–250. https://doi.org/10.1557/proc-757-ii6.3

Ma, S., Ji, S., Liao, C., Liu, C., Shih, K., & He, W. (2018). Effects of ionic radius on phase evolution in Ln-Al co-doped Ca1-xLnxZrTi2-xAlxO7 (Ln = La, Nd, Gd, Ho, Yb) solid solutions. In Ceramics International (Vol. 44, Issue 13). https://doi.org/10.1016/j.ceramint.2018.05.149

Mathew, M. D. (2022). Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy, 143. https://doi.org/10.1016/j.pnucene.2021.104080

Mulroue, J. (2013). Ab initio study of the effect of charge localisation on the prop- erties of defects in magnesium oxide and zirconolite. Doctoral Dissertation, UCL (University College London).

Musa, S. G., Aljunid Merican, Z. M., & Haruna, A. (2022). Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. Journal of Solid State Chemistry, 123363. https://doi.org/10.1016/j.jssc.2022.123363

Neumeier, S., Arinicheva, Y., Ji, Y., Heuser, J. M., Kowalski, P. M., Kegler, P., Schlenz, H., Bosbach, Di., & Deissmann, G. (2017). New insights into phosphate based materials for the immobilisation of actinides. Radiochimica Acta, 105(11), 961–984. https://doi.org/10.1515/ract-2017-2819

Pastina, B., & Laverne, J. A. (2021). An alternative conceptual model for the spent nuclear fuel–water interaction in deep geologic disposal conditions. Applied Sciences (Switzerland), 11(18). https://doi.org/10.3390/app11188566

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

Radzwan, A., Ahmed, R., Shaari, A., & Lawal, A. (2020). First-principles study of electronic and optical properties of antimony sulphide thin film. Optik, 202(October 2019). https://doi.org/10.1016/j.ijleo.2019.163631

Schreinemachers, C., Leinders, G., Mennecart, T., Cachoir, C., Lemmens, K., Verwerft, M., Brandt, F., Deissmann, G., Modolo, G., & Bosbach, D. (2022). Caesium and iodine release from spent mixed oxide fuels under repository relevant conditions: Initial leaching results. MRS Advances, 7(5–6), 100–104. https://doi.org/10.1557/s43580-022-00220-7

Shamsudeen, A., Shuaibu, A., Abdu, S. G., Abubakar, M. S., & Lawal, A. (2019). First-principles calculations of Fluorine-doped Titanium dioxide: A prospective material for solar cells application. Journal of the Nigerian Society of Physical Sciences, 1(4), 131–137. https://doi.org/10.46481/jnsps.2019.27

Shuaibu, A., Abdu, S., Aliyu, Y., & Kauru, Y. A. (2020). An Investigation of Structural and Electronic Properties of Zirconolite (CaZrTi2O7) Using Density Functional Theory. FUW Trends in Science & Technology Journal, 5(3), 943–947.

Shuaibu, A., Tanko, Y. A., Abdurrahman, Z., & Lawal, A. (2021). Effect of Beryllium and Magnesium Doped Stanene Single Layer on Structural and Electronic Properties Using Density Functional Theory as Implemented in Quantum ESPRESSO. 01(01), 1–7.

Subba Rao, T., Panigrahi, S., & Velraj, P. (2022). Transport and disposal of radioactive wastes in nuclear industry. Microbial Biodegradation and Bioremediation, 419–440. https://doi.org/10.1016/b978-0-323-85455-9.00027-8

Tanti, J., & Kaltsoyannis, N. (2021). Computational study of the substitution of early actinides and Ce into zirconolite. Journal of Nuclear Materials, 543, 152525. https://doi.org/10.1016/j.jnucmat.2020.152525

Wei, Z. J., Bao, W., Sun, S. K., Blackburn, L. R., Tan, S. H., Gardner, L. J., Guo, W. M., Xu, F., Hyatt, N. C., & Lin, H. T. (2021). Synthesis of zirconolite-2M ceramics for immobilisation of neptunium. Ceramics International, 47(1), 1047–1052. https://doi.org/10.1016/j.ceramint.2020.08.220

Whittle, K. R., Hyatt, N. C., Smith, K. L., Margiolaki, I., Berry, F. J., Knight, K. S., & Lumpkin, G. R. (2012). Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M. American Mineralogist, 97(2–3), 291–298. https://doi.org/10.2138/am.2012.3848

Zhou, Y., Liao, C., Leung, K. M., Ma, S., Chan, T. S., & Shih, K. (2022). Low charge compensator (Mg2+) causing a new REE-end 3O structure (REE=Rare Earth Element) and a different phase transformation in Nd3+ Co-doped zirconolite: Investigation by X-ray structural analysis. Ceramics International, 48(13), 18596–18604. https://doi.org/10.1016/j.ceramint.2022.03.131

Downloads

Published

2025-03-31

How to Cite

Aliyu, Y., Yahaya, A. K., Lawal, A., Shuaibu, A., & Musa, Y. A. (2025). DFT Investigation of Magnesium-Doped Zirconolite for High-Level Nuclear Waste Immobilization. UMYU Scientifica, 4(1), 297–304. https://doi.org/10.56919/usci.2541.029