Geophysical Investigation of the Subsurface Geological Structures at Alex Ekwueme Federal University Ndufu-Alike Ikwo (AE-FUNAI) in Southeastern Nigeria
DOI:
https://doi.org/10.56919/usci.2541.007Keywords:
Magnetic method, Subsurface geological structures, Structural stability assessment, Mineral resources appraisal, Southeastern NigeriaAbstract
Study’s Excerpt:
- Advanced magnetic surveys reveal key subsurface structures at 25-125m depths, suggesting lead-zinc zones.
- Analytic signal and Euler deconvolution techniques mapped four major anomalies linked to mineralized dykes.
- 3D modeling confirms a north-south fault system and significant structural variations in the study area.
- Key zones are identified as unsuitable for heavy construction due to potential structural instability.
- Findings highlight areas requiring careful planning for future mineral exploration and resource management.
Full Abstract:
This research presents a comprehensive investigation of the subsurface geological structures at Alex Ekwueme Federal University Ndufu-Alike Ikwo (AE-FUNAI) in southeastern Nigeria. This area is located near regions where significant lead-zinc (Pb-Zn) mineralization and salts have been discovered. The geological setting of the region is complex, involving the intersection of the West African Craton, Benue Trough, and Anambra Basin, providing a unique opportunity to study various rock types and structural features. By utilizing land-acquired magnetic data and advanced processing techniques, the aim of this study is to provide detailed insights into the structural layout, mineral potential, and structural stability of the AE-FUNAI region. The results indicate the presence of significant magnetic anomalies related to subsurface geologic intrusions with potential mineral deposits. Subsurface intrusions of dyke-like structures at average depths of 25 – 125 m were identified and mapped. We recommend caution in the establishment of constructional structures at some of the identified locations due to possible instability and future mineral exploitation. The findings of this research are expected to guide decision-making processes, support responsible resource development, provide valuable information for mineral exploration, land-use planning, and hazard mitigation strategies in the study area.
References
Abdelrahman, E. M., El-Araby, H. M., El-Araby, T. M., Essa, K. S. (2003). A least-squares minimization approach to depth determination from magnetic data. Pure and Applied Geophysics, 160, 1259–1271. https://doi.org/10.1007/s000240300005
Aboud, E., Abraham, E., Alqahtani, F., Abdulfaraj, M. (2023). High potential geothermal areas within the Rahat volcanic field, Saudi Arabia, from gravity data and 3D geological modeling. Acta Geophysica, https://doi.org/10.1007/s11600-023-01182-6
Aboud, E., Wameyo, P., Alqahtani, F., Moufti, M. R. (2018). Imaging subsurface northern Rahat Volcanic Field, Madinah city, Saudi Arabia, using Magnetotelluric study. Journal of Applied Geophysics, https://doi.org/10.1016/j.jappgeo.2018.10.005
Abraham, E. M, Mbarah, D. A., Eluwa, N. N. (2018b). Mapping Geological Structures Controlling Mineralization in Enyigba Area, South Eastern Nigeria, using Magnetic Inversion Technique. International Journal of Mining Science (IJMS), 4(3), 31-39. DOI: http://dx.doi.org/10.20431/2454-9460.0403004
Abraham, E. M., Alile, O. M. (2019). Modelling Subsurface Geologic Structures at Ikogosi Geothermal Field, Southwestern Nigeria, using Gravity, Magnetics, and Seismic Interferometry Techniques. Journal of Geophysics and Engineering, 16, 729– 741. https://doi.org/10.1093/jge/gxz034
Abraham, E. M., Onwe, M. R., Usman, A. O., Gwazah, C. A., Uchenna, M. E. (2022). Mapping of mineral deposits within granitic rocks by aeromagnetic data-a case study from Northern Nigeria. Arabian Journal of Geosciences, 15, 1656. https://doi.org/10.1007/s12517-022-10947-0
Abraham, E. M., Usman, A. O., Chima, K. I., Azuoko, G-B., Ikeazota, I. (2023). Magnetic inversion modeling of subsurface geologic structures for mineral deposits mapping in southeastern Nigeria. Bulletin of the Mineral Research and Exploration. https://doi.org/10.19111/bulletinofmre.1267876
Abraham, E. M., Uwaezuoke, A. E., Usman, A. O. (2024). Geophysical investigation of subsurface mineral potentials in North-Central Nigeria: Implications for sustainable mining and development. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 192. https://doi.org/10.1007/s40948-024-00913-3
Abraham, E., Itumoh, O., Chukwu, C., Onwe R. (2018a). Geothermal Energy Reconnaissance of Southeastern Nigeria from Analysis of Aeromagnetic and Gravity Data. Pure and Applied Geophysics, 176, 22 – 36. https://doi.org/10.1007/s00024-018-2028-1
Agha, S. O., Arua, A. I. (2014). Integrated-geophysical investigation of sequence of deposition of sedimentary strata in Abakaliki, Nigeria. European Journal of Physical and Agricultural Sciences, 2(1), 1-5. https://www.idpublications.org/wp-content/uploads/2014/06/INTEGRATED-GEOPHYSICAL-INVESTIGATION-OF-SEQUENCE-OF-DEPOSITION-OF-SEDIMENTARY-.pdf
Ako T., Onoduku U. S., Oke S. A., Adamu I. A., Ali S. E., Mamodu A., Ibrahim A. T. (2014). Environmental Impact of Artisanal Gold Mining in Luku, Minna, Niger State, North Central Nigeria. Journal of Geosciences and Geomatics, 2(1), 28-37. https://doi.org/10.12691/jgg-2-1-5
Alqahtani, F., Abraham, E. M., Aboud, E., Rajab, M. (2022). Two-Dimensional Gravity Inversion of Basement Relief for Geothermal Energy Potentials at the Harrat Volcanic Field, Saudi Arabia, Using Particle Swarm Optimization. Energies 15(8), 2887, https://doi.org/10.3390/en15082887
Amigun, J., Faruwa, R. and Komolafe, A. (2015). Integrated Landsat Imagery and Geophysical Exploration for Groundwater Potential Evaluation of Okene and Its Environs, Southwestern Nigeria. International Journal of Geosciences, 6, 209-229. https://doi.org/10.4236/ijg.2015.63015
Bute, S. I., Zhou, J., Luo, K., Girei, M. B., Peter, R. T. (2024). Pb-Zn-Ba deposits in the Nigerian Benue Trough: A synthesis on deposits classification and genetic model. Ore Geology Reviews, 166, 105947. https://doi.org/10.1016/j.oregeorev.2024.105947
Büyüksaraç, A., Jordanova, D., Ates¸ A., Karloukovski, V. (2005). Interpretation of the Gravity and Magnetic Anomalies of the Cappadocia Region, Central Turkey. Pure and Applied Geophysics, 162, 2197–2213. https://doi.org/10.1007/s00024-005-2712-9
Chibuogwu I. U., Ugwu G. Z., Egwuonwu G. N. (2023). Conducting a Comprehensive Physical Investigation on Uncontrolled Internal Soil Erosion Leading to Sinkholes in Anambra State, Nigeria. Asian Journal of Geographical Research, 6(3), 104-122. https://doi.org/10.9734/AJGR/2023/v6i3196
Cooper, G. R. J., Cowan, D. R. (2006). Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32(10), 1585-1591. https://doi.org/10.1016/j.cageo.2006.02.016
Couto, M. A., Aisengart, T., Barbosa, D., Ferreira, R. C. R., Baltazar, O. F., Marinho, M., Cavalcanti, A. D., Araujo, J. C. S. (2017). Magnetization-Vector Inversion, Application in quadrilatero Ferrifero region, MG, Brazil. 15th International Congress of the Brazil Geophysical Society, Rio de Janeiro, Brazil 31 July to 3 August 2017. https://doi.org/10.1190/sbgf2017-103
Ekwe, A. C., Opara, A. I., Okeugo, C. G., Azuoko, G., Nkitnam, E. E., Abraham, E. M., Chukwu, C. G., Mbaeyi G. (2020). Determination of aquifer parameters from geosounding data in parts of Afikpo Sub-basin, southeastern Nigeria. Arabian Journal of Geosciences, 13(4), 189. https://doi:10.1007/s12517-020-5137-y
Eshaghzadeh, A., Seyedi Sahebari, S., Dehghanpour, A. (2020). 2D inverse modeling of the gravity field due to a chromite deposit using the Marquardt’s algorithm and forced neural network. Bulletin Of The Mineral Research and Exploration, 161, 33-47. https://doi.org/10.19111/bulletinofmre.589224
Essa, K. S., Abo-Ezz, E. R. (2021). Potential field data interpretation to detect the parameters of buried geometries by applying a nonlinear least-squares approach. Acta Geodaetica et Geophysica, 56, 387–406. https://doi.org/10.1007/s40328-021-00337-5
Essa, K. S., Mehanee, S., Elhussein, M. (2021). Magnetic Data Profiles Interpretation for Mineralized Buried Structures Identification Applying the Variance Analysis Method. Pure and Applied Geophysics, 178, 973–993. https://doi.org/10.1007/s00024-020-02553-6
Eze, L. C., Mamah, L. I. (1985). Electromagnetic, and Ground Magnetic survey, over zones of Lead-Zinc Mineralization in Wanakom (Cross River State). Journal of African Earth Sciences (and the Middle East), 7, 749-758. https://doi.org/10.1016/0899-5362(88)90015-2
Ezema, P. O., Doris, E. I., Ugwu, G. Z., Abdullahi, U. A. (2014). Hydrocarbon & mineral exploration in Abakaliki, southeastern-Nigeria. The International Journal of Engineering and Science, 3(1): 24-30. https://www.theijes.com/papers/v3-i1/Version-2/D030102024030.pdf
Ganguli, S. S., Pal, S. K., Kumar, S. K. P. (2021). Insights into the crustal architecture from the analysis of gravity and magnetic data across Salem-Attur Shear Zone (SASZ), Southern Granulite Terrane (SGT), India: an evidence of accretional tectonics. Episodes. https://doi.org/10.18814/epiiugs/2020/020095
Leâo-Santos, M., Li, Y., Moraes, R. (2015). Application of 3D-magnetic amplitude inversion, to iron oxide-copper-gold deposits, at low magnetic latitudes: A case-study from Carajas Mineral Province, Brazil. Geophysics, 80(2), B13 – B22. https://doi.org/10.1190/geo2014-0082.1
Lelievre, P. G. (2003). Forward modeling and inversion of geophysical magnetic data. A master's thesis submitted to The University of British Columbia. Retrieved from https://gif.eos.ubc.ca/sites/default/files/lelievre_master_thesis.pdf on 14th June, 2023.
MacLeod, I. N., Ellis, R. G. (2013). Magnetic vector inversion a simple approach to the challenge of varying direction of rock magnetization. ASEG-PESA 2013. 23rd International Geophysical Conference and Exhibition, 11-14 August 2013-Melbourne, Australia. Retrieved from https://www.scirp.org/reference/referencespapers?referenceid=3145411 on 6th July, 2023
Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507-517. https://doi.org/10.1190/1.1440276
Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Ruder, M. E. (2005). The historical development of the magnetic method in exploration. Geophysics, 70(6), 33ND-61ND. https://doi.org/10.1190/1.2133784
Nwachukwu, M. A. (2004). SP and VES responses over Pb-Zn and associated sulphides mineralized zone of Izzi area. Global journal of geological sciences, 2(1), 61 – 66. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ajol.info/index.php/gjgs/article/view/18682/17424&ved=2ahUKEwiu1ZXW1POKAxWkWEEAHRyXFc4QFnoECCUQAQ&usg=AOvVaw0l5l1Sox12vBx9aW3AlqfR
Nwachukwu, S. O. (1972). The Tectonic Evolution of the Southern Portion of the Benue Trough, Nigeria. Geological Magazine, 109(5), 411-419. https://doi.org/10.1017/S0016756800039790
Obande, G. E., Lawal, K. M., Ahmed, L. A. (2014). Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, north-east Nigeria. Geothermics, 50, 85–90. https://doi.org/10.1016/j.geothermics.2013.08.002
Obassi, E. , Gundu, D., Akindele, U. (2015) Liberation Size and Beneficiation of Enyigba Lead Ore, Ebonyi State, South-East Nigeria. Journal of Minerals and Materials Characterization and Engineering, 3, 125-133. https://doi.org/10.4236/jmmce.2015.33015
Ofoegbu, C.O. (1985). A review of the Geology of the Benue Trough Nigeria, Journal of African Earth Sciences, 3, 283. https://doi.org/10.1016/0899-5362(85)90001-6
Olade, M. A. (1975). Evolution of Nigeria’s Benue-Trough (Aulacogen): A tectonic model. Geological Magazine, 112(6), 575 - 583. https://doi.org/10.1017/S001675680003898X
Rajagopalan, S. (2003). Analytic Signal vs. Reduction to Pole: Solutions for Low Magnetic Latitudes. Exploration Geophysics, 34(4), 257–262. https://doi.org/10.1071/EG03257
Reid, A. B., Allsop, J. M., Grauser, H., Millet, A. J., Somerton, I. N. (1990). Magnetic interpretation in 3D using Euler-Deconvolution. Geophysics, 55, 80-91. https://doi.org/10.1190/1.1442774
Riedel, S. (2008). Airborne-Based geophysical investigation in Dronning Maud land Antarctica. Dissertation, Christian Albrechts Universitat Zu Kiel, Kiel. Retrieved on 8th February 2022 from https://epic.awi.de/id/eprint/20643/1/Rie2009d.pdf
Rock, O. M., Abraham, E. M., Ambrose, N. T., Osike, O. K. (2022). An evaluation of the hydrogeology potential of Nsukka, Southern Nigeria, using geographic information system. Applied Water Science, 12, 54, https://doi.org/10.1007/s13201-022-01579-6
Rock, O. M., Omonona, V. O., Abraham, E. M. (2017). Exploring and Reserve Estimation for Industrial Mineral Potential in Parts of Calabar Area (Ewen/Iwuru/Agbangana Axis) Southern Nigeria. J. Geology & Geophysics, 6(6): 317. https://doi.org/10.4172/2381-8719.1000317
Roest, W. R., Verhoef, J., Pilkington, M. (1992). Magnetic interpretation using the 3D analytic signal. Geophysics 57(1), 116-125. https://doi.org/10.1190/1.1443174
Srivastava, S., Agarwal, B. N. P. (2010). Inversion of the amplitude of the two-dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique. Geophysical Journal International. 182, 652-662. https://doi.org/10.1111/j.1365-246X.2010.04631.x
Thompson, D. T. (1982). Euldph: A new technique, for making computer-assisted, depth- estimates, from magnetic data, Geophysics, 47, 31-37. https://doi.org/10.1190/1.1441278
Ugodulunwa, F. X. O., Ekwe, A. C., Abraham, E. M., Chukwu, C. G., Onwe, R. M. (2021). Determination of depths to magnetic sources within Abakaliki–Afikpo area and environs, Southeastern Nigeria: implications for mineral and hydrocarbon prospectivity. Exploration Geophysics, 53(4), 439-454. https://doi.org/10.1080/08123985.2021.1982646
Ugwu, G. Z., Alasi, T. K. (2016). Aeromagnetic Survey for Determining Depth, to Magnetic Source of Abakaliki and Ugep Areas, of the Lower Benue Trough, Nigeria. Engineering and Technology Journal, 1(1), 18 – 31. Retrieved from http://everant.org/index.php/etj/article/view/173 on 5th October 2021.
Usman, A. O., Abraham, E. M., Chris, E., Azuoko, G-B., Chinwuko, A. I., Chizoba, C. J., Akakuru, O. C. (2024). Structural modelling of subsurface geologic structures in Anambra and adjoining Bida Basins using aeromagnetic data: Implications for mineral explorations. Kuwait Journal of Science, 52, 100307. https://doi.org/10.1016/j.kjs.2024.100307
Usman, A., Ifeanyi, A. C., Azuoko, GB, Ekwe, A. C., Abraham, E. M., Chizoba, J. C., (2023). Geo-morphological mapping of the basin configuration of parts of southern Nupe Basin, Nigeria, using high resolution aeromagnetic and core drill dataset. Iranian Journal of Geophysics, 17(3): 91 – 110. https://doi.org/10.30499/IJG.2023.383276.1486
Whitehead, N., Musselman, C. (2005). Montaj Gravity/Magnetic interpretation: Processing, analysis, and visualization system, for 3-D inversion of potential field data, for Oasis montaj v6.1. Geosoft Inc. ON, Canada. Retrieved on 16th August, 2023 from https://www.scribd.com/document/349623750/montajGravMagInterpretation-pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ema Abraham, Amobi Ekwe, George-Best Azuoko, Iheanyi Ikeazota

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.