Theoretical Study of the Transport Properties of 〖Cs〗_2 NaBiX_6 [X=Br,I] Double Perovskite and its Stability for Thermoelectric Applications

Authors

DOI:

https://doi.org/10.56919/usci.2541.017

Keywords:

electrical conductivity, Double perovskite, imaginary frequency, figure of merit

Abstract

Study’s Excerpt:
• Cs2NaBiX6 (X=Br, I) double perovskites have been investigated for thermoelectric applications.
• Density functional theory confirmed the mechanical stability of the double perovskites.
• Elastic constant calculations supported this stability.
• The Boltzmann Transport Equation was used to study transport properties.
• Results showed a high thermoelectric figure of merit.
Full Abstract:
Perovskite materials are very useful in photovoltaic applications, and their application can also be extended to thermoelectric devices. Double perovskites have lately attracted interest due to research into their characteristics and prospective applications in thermoelectric devices. 〖Cs〗_2 NaBiX_6 Double Perovskites (DPs) are considered in this study to cross-examine their transport, mechanical, and vibrational properties from an ab-initio method to determine their potential for thermoelectric application. The transport coefficients evaluated in this study include the Seebeck coefficient, electrical conductivity, thermal conductivity, power factor, and the thermoelectric figure of merit. The properties are calculated as a function of chemical potential at a temperature range of 300 K to 800 K. The findings show a high figure of merit of a near unity at all temperature ranges. The mechanical properties suggest that the materials satisfy the Born stability criteria for cubic crystals and are thus stable mechanically. The vibrational properties through phonon dispersion curves suggest the materials lack dynamical stability as a result of imaginary frequencies present at the Brillouin zone boundary and center (Γ) of the DP materials. The materials can, therefore, be useful for thermoelectric applications, allowing for the operation of their devices even at high temperatures.

References

Acharya, S., Pandey, J., & Soni, A. (2016). Soft phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping. Applied Physics Letters, 109(13), 1–6. https://doi.org/10.1063/1.4963728

Ahmed, R., Masuri, N. S., Ul Haq, B., Shaari, A., AlFaifi, S., Butt, F. K., … Tahir, S. A. (2017). Investigations of electronic and thermoelectric properties of half-Heusler alloys XMgN (X = Li, Na, K) by first-principles calculations. Materials and Design, 136, 196–203. https://doi.org/10.1016/j.matdes.2017.09.038

Aisida, S. O., & Oyewande, O. E. (2015). Move-biased Monte Carlo simulation method for amino acid gyration in protein native structure prediction. African Review of Physics, 10(1), 465–473.

Al-Muhimeed, T. I., Aljameel, A. I., Mera, A., Saad, S., Nazir, G., Albalawi, H., … Mahmood, Q. (2022). First principle study of optoelectronic and mechanical properties of lead-free double perovskites Cs2SeX6 (X = Cl, Br, I). Journal of Taibah University for Science, 16(1), 155–162. https://doi.org/10.1080/16583655.2022.2035927

Aslam, F., Sabir, B., & Hassan, M. (2021). Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs2InAgX6 (X = Cl, Br, I) for energy applications. Applied Physics A: Materials Science and Processing, 127(2), 1–12. https://doi.org/10.1007/s00339-020-04178-x

Atsue, T., Ogunniranye, I. B., & Oyewande, O. E. (2021). Investigation of material properties of halide mixed lead-free double perovskite for optoelectronic applications using first-principles study. Materials Science in Semiconductor Processing, 133(10), 105963. https://doi.org/10.1016/j.mssp.2021.105963

Atsue, T., & Oyewande, O. E. (2024). First-principles study of the structural, mechanical, dynamical, and transport properties of Cs2NaInX6 [X = Br, I] for thermoelectric applications. Current Applied Physics, 57(November 2023), 70–78. https://doi.org/10.1016/j.cap.2023.10.017

Atsue, T., & Oyewande, O. E. (2024). Investigating the CsAuX3 [X = Cl, Br, I] perovskite materials properties responsible for photovoltaic applications: A first-principles study. Computational Materials Science, 236(February), 112881. https://doi.org/10.1016/j.commatsci.2024.112881

Bairwa, J. K., Kamlesh, P. K., Rani, U., Singh, R., Gupta, R., Kumari, S., … Verma, A. S. (2024). Highly efficient and stable Ra2LaNbO6 double perovskite for energy conversion device applications. Materials Science for Energy Technologies, 7(April 2023), 61–72. https://doi.org/10.1016/j.mset.2023.07.005

Born, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160–172. https://doi.org/10.1017/S0305004100017138

Broyden, C. G. (1970a). The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 6(3), 222–231. https://doi.org/10.1093/imamat/6.3.222

Broyden, C. G. (1970b). The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 6(1), 76–90. https://doi.org/10.1093/imamat/6.1.76

Chang, C., & Zhao, L. D. (2018). Anharmonicity and low thermal conductivity in thermoelectrics. Materials Today Physics, 4, 50–57. https://doi.org/10.1016/j.mtphys.2018.02.005

Chatterji, T., Wdowik, U. D., Jagło, G., Rols, S., & Wagner, F. R. (2018). Soft-phonon dynamics of the thermoelectric β-SnSe at high temperatures. Physics Letters, Section A: General, Atomic and Solid State Physics, 382(29), 1937–1941. https://doi.org/10.1016/j.physleta.2018.05.011

Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H., … Yang, Y. (2014). Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 136(2), 622–625. https://doi.org/10.1021/ja411509g

Chen, X.-Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9), 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026

Chung, D. H., & Buessem, W. R. (1967). The elastic anisotropy of crystals. Journal of Applied Physics, 38(5), 2010–2012. https://doi.org/10.1063/1.1709819

Dal Corso, A. (2016). Elastic constants of beryllium: A first-principles investigation. Journal of Physics Condensed Matter, 28(7). https://doi.org/10.1088/0953-8984/28/7/075401

Filip, M. R., & Giustino, F. (2016). Computational screening of homovalent lead substitution in organic-inorganic halide perovskites. Journal of Physical Chemistry C, 120(1), 166–173. https://doi.org/10.1021/acs.jpcc.5b11845

Filip, M. R., Hillman, S., Haghighirad, A. A., Snaith, H. J., & Giustino, F. (2016). Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. Journal of Physical Chemistry Letters, 7(13), 2579–2585. https://doi.org/10.1021/acs.jpclett.6b01041

Ghrib, T., Rached, A., Algrafy, E., Al-nauim, I. A., Albalawi, H., Ashiq, M. G. B., … Mahmood, Q. (2021). A new lead-free double perovskites K2Ti(Cl/Br)6; A promising material for optoelectronic and transport properties; Probed by DFT. Materials Chemistry and Physics, 264(September 2020), 124435. https://doi.org/10.1016/j.matchemphys.2021.124435

Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., … Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics Condensed Matter, 29(46), 465901. https://doi.org/10.1088/1361-648X/aa8f79

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502

Hamann, D. R., Schlüter, M., & Chiang, C. (1979). Norm-conserving pseudopotentials. Physical Review Letters, 43(20), 1494–1497. https://doi.org/10.1103/PhysRevLett.43.1494

Hao, F., Stoumpos, C. C., Chang, R. P. H., & Kanatzidis, M. G. (2014). Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 136(22), 8094–8099. https://doi.org/10.1021/ja5033259

Haq, A. U., Mustafa, G. M., Amin, M., Ramay, S. M., & Mahmood, A. (2021). Ab-initio study of opto-electronic and thermoelectric properties of direct bandgap double perovskites Rb2XGaBr6 (X = Na, K). International Journal of Energy Research, 45(6), 9241–9251. https://doi.org/10.1002/er.6455

Haque, E., & Hossain, M. A. (2019). Electronic, phonon transport, and thermoelectric properties of Cs2InAgCl6 from first-principles study. Computational Condensed Matter, 19, e00374. https://doi.org/10.1016/j.cocom.2019.e00374

Johnson, O. O., Olutuase, P. E., & Oyewande, O. E. (2019). First principles calculations of the optoelectronic properties of magnesium substitutes in lead-based ABX3 compounds. Journal of Physics: Conference Series, 1299(1), 012129. https://doi.org/10.1088/1742-6596/1299/1/012129

Jong, U. G., Yu, C. J., Kye, Y. H., Kim, Y. S., Kim, C. H., & Ri, S. G. (2018). A first-principles study on the chemical stability of inorganic perovskite solid solutions Cs1-xRbxPbI3 at finite temperature and pressure. Journal of Materials Chemistry A, 6(37), 17994–18002. https://doi.org/10.1039/c8ta06553e

Jong, U., Yu, C., Kye, Y., Choe, S., Kim, J., & Choe, Y. (2019). Anharmonic phonons and phase transitions in the vacancy-ordered double perovskite Cs2SnI6 from first-principles predictions. Physical Review B, 99(18), 1–8. https://doi.org/10.1103/PhysRevB.99.184105

Joshi, T. K., Pravesh, Sharma, G., & Verma, A. S. (2020). Investigation of structural, electronic, optical, and thermoelectric properties of ethylammonium tin iodide (CH3CH2NH3SnI3): An appropriate hybrid material for photovoltaic application. Materials Science in Semiconductor Processing, 115(April), 105111. https://doi.org/10.1016/j.mssp.2020.105111

Kagdada, H. L., Jha, P. K., Śpiewak, P., & Kurzydłowski, K. J. (2018). Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure. Physical Review B, 97(13), 1–10. https://doi.org/10.1103/PhysRevB.97.134105

Kattan, N. A., Mahmood, Q., Nazir, G., Rehman, A., Sfina, N., Al-anazy, M. M., … Amin, M. A. (2023). Modifying electronic bandgap by halide ions substitution to investigate double perovskites Rb2AgInX6 (X = Cl, Br, I) for solar cells applications and thermoelectric characteristics. Materials Today Communications, 34(December 2022), 105166. https://doi.org/10.1016/j.mtcomm.2022.105166

Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., … Park, N. G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2, 1–7. https://doi.org/10.1038/srep00591

Kokalj, A. (1999). XCrySDen—A new program for displaying crystalline structures and electron densities. Journal of Molecular Graphics and Modelling, 17(3–4), 176–179. https://doi.org/10.1016/S1093-3263(99)00028-5

Kolebaje, O., Popoola, O., Khan, M. A., & Oyewande, O. (2020). An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative. Chaos, Solitons & Fractals, 139(109970), 109970. https://doi.org/10.1016/j.chaos.2020.109970

Krishnamoorthy, T., Ding, H., Yan, C., Leong, W. L., Baikie, T., Zhang, Z., … Mhaisalkar, S. G. (2015). Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 3(47), 23829–23832. https://doi.org/10.1039/c5ta05741h

Lahiri, A. K. (2005). Transport phenomena and metals properties. In Fundamentals of metallurgy (pp. 178–236). https://doi.org/10.1533/9781845690946.1.178

Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F., & McGehee, M. D. (2017). Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Letters, 2(9), 2159–2165. https://doi.org/10.1021/acsenergylett.7b00636

Li, H., Zhang, X., Liu, Q., Liu, Y., Liu, H., Wang, X., … Lei, G. (2019). First-principles calculations of mechanical and thermodynamic properties of tungsten-based alloy. Nanotechnology Reviews, 8(1), 258–265. https://doi.org/10.1515/ntrev-2019-0024

Luan, X., Qin, H., Liu, F., Dai, Z., Yi, Y., & Li, Q. (2018). The mechanical properties and elastic anisotropies of cubic Ni3Al from first principles calculations. Crystals, 8(8), 307. https://doi.org/10.3390/cryst8080307

Luo, Z. Z., Hao, S., Zhang, X., Hua, X., Cai, S., Tan, G., … Kanatzidis, M. G. (2018). Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe-GeSe. Energy and Environmental Science, 11(11), 3220–3230. https://doi.org/10.1039/c8ee01755g

Lyu, M., Yun, J., Chen, P., Hao, M., & Wang, L. (2017). Addressing toxicity of lead: Progress and applications of low-toxic metal halide perovskites and their derivatives. Advanced Energy Materials, 7(15), 1602512. https://doi.org/10.1002/aenm.201602512

Mahmood, Q., Yaseen, M., Ul Haq, B., Laref, A., & Nazir, A. (2019). The study of mechanical and thermoelectric behavior of MgXO3 (X = Si, Ge, Sn) for energy applications by DFT. Chemical Physics, 524(May), 106–112. https://doi.org/10.1016/j.chemphys.2019.05.009

McClure, E. T., Ball, M. R., Windl, W., & Woodward, P. M. (2016). Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chemistry of Materials, 28(5), 1348–1354. https://doi.org/10.1021/acs.chemmater.5b04231

Mera, A., Nazir, G., Mahmood, Q., Kattan, N. A., Alshahrani, T., Rehman, A., … Elhosiny Ali, H. (2023). The bandgap engineering of double perovskites Cs2CuSbX6 (X = Cl, Br, I) for solar cell and thermoelectric applications. Inorganic Chemistry Communications, 148(December 2022), 110303. https://doi.org/10.1016/j.inoche.2022.110303

Moniruddin, M., Ilyassov, B., Zhao, X., Smith, E., Serikov, T., Ibrayev, N., … Nuraje, N. (2018). Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy, 7, 246–259. https://doi.org/10.1016/j.mtener.2017.10.005

Murnaghan, F. D. (1924). The volume changes of five gases under high pressures. Journal of the Franklin Institute, 197(1), 98. https://doi.org/10.1016/s0016-0032(24)90498-4

Murtaza, G., Gupta, S. K., Seddik, T., Khenata, R., Alahmed, Z. A., Ahmed, R., … Bin Omran, S. (2014). Structural, electronic, optical, and thermodynamic properties of cubic REGa3 (RE = Sc or Lu) compounds: Ab initio study. Journal of Alloys and Compounds, 597, 36–44. https://doi.org/10.1016/j.jallcom.2014.01.203

Noor, N. A., Iqbal, M. W., Zelai, T., Mahmood, A., Shaikh, H. M., Ramay, S. M., & Al-Masry, W. (2021). Analysis of direct band gap A2ScInI6 (A = Rb, Cs) double perovskite halides using DFT approach for renewable energy devices. Journal of Materials Research and Technology, 13, 2491–2500. https://doi.org/10.1016/j.jmrt.2021.05.080

Ogunniranye, I. B., Atsue, T., & Oyewande, O. E. (2021). Structural and optoelectronic behavior of the copper-doped Cs2AgInCl6 double perovskite: A density functional theory investigation. Physical Review B, 103(2), 024102. https://doi.org/10.1103/PhysRevB.103.024102

Osafile, O. E., & Nenuwe, O. N. (2021). Lattice dynamics and thermodynamic responses of XNbSn half-Heusler semiconductors: A first-principles approach. Journal of the Nigerian Society of Physical Sciences, 3(2), 121–130. https://doi.org/10.46481/jnsps.2021.174

Oyewande, O., & Adeoti, B. (2014). Theory of off-normal incidence ion sputtering of surfaces of type A_xB_{1-x} and a conformal map method for stochastic continuum models. The African Review of Physics, 9(0024), 177–183.

Oyewande, O. E. (2012). A unified spatio-temporal framework of the Cuerno-Barabasi stochastic continuum model of surface sputtering. Communications in Theoretical Physics, 58(1), 165–170. https://doi.org/10.1088/0253-6102/58/1/23

Oyewande, O. E. (2013). Phase boundaries of nano-dots and nano-ripples over a range of collision cascades. The African Review of Physics, 8(44), 313–316. https://doi.org/10.1016/j.nantod.2013.04.006

Pack, J. D., & Monkhorst, H. J. (1977). Summary for policymakers. In Climate change 2013 - The physical science basis (Vol. 53, pp. 1–30). https://doi.org/10.1017/CBO9781107415324.004

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100(13), 1–4. https://doi.org/10.1103/PhysRevLett.100.136406

Pitaro, M., Tekelenburg, E. K., Shao, S., & Loi, M. A. (2022). Tin halide perovskites: From fundamental properties to solar cells. Advanced Materials, 34(1). https://doi.org/10.1002/adma.202105844

Pugh, S. F. (1954). Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. https://doi.org/10.1080/14786440808520496

Roknuzzaman, M., Zhang, C., Ostrikov, K. (Ken), Du, A., Wang, H., Wang, L., & Tesfamichael, T. (2019). Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-018-37132-2

Roychowdhury, S., Jana, M. K., Pan, J., Guin, S. N., Sanyal, D., Waghmare, U. V., & Biswas, K. (2018). Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe. Angewandte Chemie - International Edition, 57(15), 4043–4047. https://doi.org/10.1002/anie.201801491

Shi, H., & Du, M.-H. (2015). Discrete electronic bands in semiconductors and insulators: Potential high-light-yield scintillators. Physical Review Applied, 3(5), 054005. https://doi.org/10.1103/PhysRevApplied.3.054005

Sholl, D. S., & Steckel, J. A. (2009). Density functional theory: A practical introduction. Wiley. https://doi.org/10.1002/9780470447710

Slavney, A. H., Hu, T., Lindenberg, A. M., & Karunadasa, H. I. (2016). A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American Chemical Society, 138(7), 2138–2141. https://doi.org/10.1021/jacs.5b13294

Slavney, A. H., Smaha, R. W., Smith, I. C., Jaffe, A., Umeyama, D., & Karunadasa, H. I. (2017). Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers. Inorganic Chemistry, 56, 46–55. https://doi.org/10.1021/acs.inorgchem.6b01336

Tomczak, J. M. (2018). Thermoelectricity in correlated narrow-gap semiconductors. Journal of Physics Condensed Matter, 30(18). https://doi.org/10.1088/1361-648X/aab284

Volonakis, G., Filip, M. R., Haghighirad, A. A., Sakai, N., Wenger, B., Snaith, H. J., & Giustino, F. (2016). Lead-free halide double perovskites via heterovalent substitution of noble metals. Journal of Physical Chemistry Letters, 7(7), 1254–1259. https://doi.org/10.1021/acs.jpclett.6b00376

Yang, Z., Rajagopal, A., Chueh, C. C., Jo, S. B., Liu, B., Zhao, T., & Jen, A. K. Y. (2016). Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Advanced Materials, 28(40), 8990–8997. https://doi.org/10.1002/adma.201602696

Yewande, E. O., Hartmann, A. K., & Kree, R. (2005). Propagation of ripples in Monte Carlo models of sputter-induced surface morphology. Physical Review B, 71(19), 195405. https://doi.org/10.1103/PhysRevB.71.195405

Yewande, E. O., Kree, R., & Hartmann, A. K. (2006). Morphological regions and oblique-incidence dot formation in a model of surface sputtering. Physical Review B - Condensed Matter and Materials Physics, 73(11), 1–8. https://doi.org/10.1103/PhysRevB.73.115434

Yewande, E. O., Kree, R., & Hartmann, A. K. (2007). Numerical analysis of quantum dots on off-normal incidence ion sputtered surfaces. Physical Review B - Condensed Matter and Materials Physics, 75(15), 14–16. https://doi.org/10.1103/PhysRevB.75.155325

Yewande, E. O., Neal, M. P., & Low, R. (2009). The Hausdorff chirality measure and a proposed Hausdorff structure measure. Molecular Physics, 107(3), 281–291. https://doi.org/10.1080/00268970902835611

Yewande, O. E., Moreno, Y., Kun, F., Hidalgo, R. C., & Herrmann, H. J. (2003). Time evolution of damage under variable ranges of load transfer. Physical Review E, 68(2), 026116. https://doi.org/10.1103/PhysRevE.68.026116

Zhao, S., Yamamoto, K., Iikubo, S., Hayase, S., & Ma, T. (2018). First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I). Journal of Physics and Chemistry of Solids, 117, 117–121. https://doi.org/10.1016/j.jpcs.2018.02.032

Downloads

Published

2025-02-24

How to Cite

Atsue, T., & Oyewande, O. E. (2025). Theoretical Study of the Transport Properties of 〖Cs〗_2 NaBiX_6 [X=Br,I] Double Perovskite and its Stability for Thermoelectric Applications. UMYU Scientifica, 4(1), 168–178. https://doi.org/10.56919/usci.2541.017