Sine-Exponential Distribution: Its Mathematical Properties and Application to Real Dataset

Authors

DOI:

https://doi.org/10.56919/usci.1122.017

Keywords:

Maximum likelihood estimators, Moment, Sine Exponential Distribution, Exponential Distribution, Sine G family

Abstract

To increase flexibility or to develop covariate models in various ways, new parameters can be added to existing families of distributions or a new family of distributions can be compounded with well-known standard normal distribution. In this paper, a trigonometric-type distribution was developed in order to come up with flexible distribution without adding parameters, considering Exponential distribution as the baseline distribution and Sine-G as the generator. The proposed distribution is referred to as Sine Exponential Distribution. Statistical features, including the moment, moment generating function, entropy, and order statistics were obtained. The proposed distribution's parameters were estimated using the Maximum Likelihood method. Using real datasets, the model's importance was demonstrated. The newly developed model was proven to be better than its competitors.

References

Ahmed, A., Ahmad, A. & Tripathi, R. (2021). "Topp-Leone Power Rayleigh Distribution with Properties and Application in Engineering Science". Advances and Applications in Mathematical Sciences, 20(11), 2852-2877.

Alzaatreh, A., Lee, C., & Famoye, F. (2013). "A new method for generating families of continuous distributions". Metron, 71(1), 63-79. [Crossref]

https://doi.org/10.1007/s40300-013-0007-y

Bhuamik D.K, Kapur K. & Gibbons R.D. (2009). "Testing Parameters of a Gamma Distribution for Small Samples". Technometrics, 51(3), 326 - 334. [Crossref] https://doi.org/10.1198/tech.2009.07038

Cordeiro, G. M., Ortega, E. M., & da Cunha, D. C. (2013). "The exponentiated generalized class of distributions". Journal of data science, 11(1), 1-27. [Crossref] https://doi.org/10.6339/JDS.2013.11(1).1086

David, H. A. (1970). Order Statistics, Wiley, New York.

Dhugana, G.P., & Kumar, V. (2022). "Exponentiated Odd Lomax Exponential Distribution with Application to Covid - 19 death cases of Nepal". PloS ONE, 17(6), 1-26. [Crossref]

https://doi.org/10.1371/journal.pone.0269450

Eugene, N., Lee, C., & Famoye, F. (2002). "Beta-normal distribution and its applications". Communications in Statistics-Theory and methods, 31(4), 497-512. [Crossref]

https://doi.org/10.1081/STA-120003130

Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). "Modeling failure time data by Lehman alternatives". Communications in Statistics-Theory and methods, 27(4), 887-904. [Crossref]

https://doi.org/10.1080/03610929808832134

Halid, O.Y. & Sule, O. B. (2022). "Classical and Bayesian Estimation Techniques for Gompertz Inverse Rayleigh Distribution: Properties and Application". Pakistan Journal of Statistics 38(1), 49 - 76.

Isa, A. M., B. A., & U, Zannah, (2022). "Sine Burr XII Distribution: Properties and Application to Real Data Sets". Arid Zone Journal of Basic and Applied Research, 1(3), 48 - 58. [Crossref]

https://doi.org/10.55639/607lkji

Kumar, D., Singh, U. & Singh, S. K. (2015). A New Distribution Using Sine Function. Its Application to Bladder Cancer Patients Data. Journal of Statistics and Applied Probabilit, 4(3), 417-427.

Muhammad, M., Alshanbari, H.M. Alanzi, A.R.A., Liu, L., Sami, W., Chesneau, C., Jamal, F. A. (2021). "New Generator of Probability Models: The Exponentiated Sine-G Family for Lifetime Studies". Entropy, 23, 1394.[Crossref]

https://doi.org/10.3390/e23111394

Ogunsanya A. S., Yahaya, W. B., Adegoke, T. M., Iluno, C., Aderele, O. R. & Ekum, M. I. (2021). "A New Three - Parameter Warameter Inverse Rayleigh Distribution: Theoretical Development and Applications". Mathematics and Statistics, 9(3), 248-272. [Crossref]

https://doi.org/10.13189/ms.2021.090306

Oguntunde, P. E., Khaleel, M. A., Adejumo, A. O., Okagbue, H. I., Opanuga, A. A. & Owolabi, F. O. (2018). "The Gompertz Inverse Exponential distribution with application". Congent Mathematics & Statistics, 5, 1507122: 1 - 11. [Crossref] https://doi.org/10.1080/25742558.2018.1507122

Shaw, W. T. & Buckley, I. R. (2009). "The Alchemy of probability distributions: Beyond Gramcharlier Expansions, and a Skew-Kurtotic-Normal Distribution from a Rank Transmutation Map". arXiv preprint arXiv:0901.0434.

Downloads

Published

2022-09-30

How to Cite

Alhaji Modu Isa, Sule Omeiza Bashiru, Buhari Alhaji Ali, Akeem Ajibola Adepoju, & Ibrahim Ismaila Itopa. (2022). Sine-Exponential Distribution: Its Mathematical Properties and Application to Real Dataset. UMYU Scientifica, 1(1), 127–131. https://doi.org/10.56919/usci.1122.017