Phase transformation and thermal stability studies of Fe-doped ZnSe nanocrystals
DOI:
https://doi.org/10.56919/usci.2541.037Keywords:
Nanocrystalline, XRD, HR-TEM, TGA, DSC characterization, Mechanochemical synthesis, nanocrystal, doping process, thermal property, phase transformationAbstract
Study’s Excerpt:
• Cost-effective method for synthesizing ZnSeFe compound for spintronic applications.
• Phase transformation ZnSeFe nanocrystal monitored through XRD, DSC, and TGA analyses.
• The thermal stability of ZnSeFe compound increases as the milling time progresses to about 20 hours.
Full Abstract:
This study explored the phase transformation in ZnSe doped with Fe ions via XRD, TGA, and HRTEM analyses. The X-ray diffraction pattern of the Fe-doped ZnSe nanocrystal milled for 5 hours, 10 hours, and 20 hours revealed a cubic phase structure that became progressively stable after 5 hours of milling. The XRD peaks broadened with increasing milling time, suggesting a decrease in the crystallite size of 4.2 nm after 20 h of milling, as evaluated by Scherre’s formula. High-resolution transmission electron microscopy (HR-TEM) revealed well-defined lattice fringes with an interplanar spacing of approximately 0.38 nm. The thermal properties of the milled powder were characterized via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The endothermic peak increases linearly from 230–475 °C, whereas the exothermic peak decreases and later increases with increasing milling time. The thermal stability of the Fe-doped ZnSe nanocrystal improved as the milling progressed, and a weight loss of 14–4% was recorded.
References
Bindra, J. K., Gutsev, L. G., Van Tol, J., Singh, K., Dalal, N. S., & Strouse, G. F. (2018). Experimental Validation of Ferromagnetic-Antiferromagnetic Competition in FexZn1- xSe Quantum Dots by Computational Modeling. Chemistry of Materials, 30(6), 2093–2101. https://doi.org/10.1021/acs.chemmater.8b00143
Burwig, T., Heinze, K., & Pistor, P. (2022). Thermal decomposition kinetics of FAPbI3 thin films. Physical Review Materials, 6(6), 1–12. https://doi.org/10.1103/PhysRevMaterials.6.065404
de Moraes, A. R., Silveira, E., Mosca, D. H., Mattoso, N., & Schreiner, W. H. (2002). Surface-enhanced Raman scattering for magnetic semiconductor ZnSe:Fe hybrid structures. Physical Review B - Condensed Matter and Materials Physics, 65(17), 1724181–1724184. https://doi.org/10.1103/PhysRevB.65.172418
Dutta, A., Almutairi, A. S., Joseph, J. P., Baev, A., Petrou, A., Zeng, H., & Prasad, P. N. (2022). Exploring magneto-optic properties of colloidal two-dimensional copper-doped CdSe nanoplatelets. Nanophotonics, 11(22), 5143–5152. https://doi.org/10.1515/nanoph-2022-0503
Fatahi, H., Claverie, J., & Poncet, S. (2022). Thermal Characterization of Phase Change Materials by Differential Scanning Calorimetry: A Review. Applied Sciences, 12(23), 12019. https://doi.org/10.3390/app122312019
Hou, C., Jia, X., Wei, L., Stolyarov, A. M., Shapira, O., Joannopoulos, J. D., & Fink, Y. (2013). Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fibre drawing. Nano Letters, 13(3), 975–979. https://doi.org/10.1021/nl304023z
Kobak, J., Smoleński, T., Goryca, M., Papaj, M., Gietka, K., Bogucki, A., Koperski, M., Rousset, J.-G., Suffczyński, J., Janik, E., Nawrocki, M., Golnik, A., Kossacki, P., & Pacuski, W. (2014). Designing quantum dots for solotronics. Nature Communications, 5(1), 3191. https://doi.org/10.1038/ncomms4191
Kurian, G., & Mochena, M. (2020). First principles investigations of Fe3+ impurity and Fe3+ + V−Cd complex in strongly confined CdSe quantum dot. Journal of Applied Physics, 128(17). https://doi.org/10.1063/5.0026895
Kwon, S. W., & Yoon, D. H. (1989). Dependence of the Cyrstal Structure on Particle Size in Barium Titanate. Journal of the American Ceramic Society, 72(August), 1555–1558.
Li, S., & Yang, G. W. (2010). Phase Transition of II−VI Semiconductor Nanocrystals. The Journal of Physical Chemistry C, 114(35), 15054–15060. https://doi.org/10.1021/jp1056545
Marangolo, M., Gustavsson, F., Eddrief, M., Sainctavit, P., Etgens, V. H., Cros, V., Petroff, F., George, J. M., Bencok, P., & Brookes, N. B. (2002). Magnetism of the [Formula presented] Interface. Physical Review Letters, 88(21), 4. https://doi.org/10.1103/PhysRevLett.88.217202
Müller, L., Rubio-Pérez, G., Bach, A., Muñoz-Rujas, N., Aguilar, F., & Worlitschek, J. (2020). Consistent DSC and TGA Methodology as Basis for the Measurement and Comparison of Thermo-Physical Properties of Phase Change Materials. Materials, 13(20), 4486. https://doi.org/10.3390/ma13204486
Qin, C., Matsushima, T., Klotz, D., Fujihara, T., & Adachi, C. (2019). Device Stability: The Relation of Phase‐Transition Effects and Thermal Stability of Planar Perovskite Solar Cells (Adv. Sci. 1/2019). Advanced Science, 6(1), 499–506. https://doi.org/10.1002
Sekerci, M., & Yakuphanoglu, F. (2004). Thermal analysis study of some transition metal complexes by TG and DSC methods. Journal of Thermal Analysis and Calorimetry, 75(1), 189–195. https://doi.org/10.1023/B:JTAN.0000017341.20105.22
Sou, I. K., Wang, C., Chan, S. K., & Wong, G. K. L. (2005). Thermal diffusion studies of MBE-grown ZnSe/Fe/ZnSe and ZnS/Fe/ZnS structures. Journal of Crystal Growth, 278(1–4), 282–287. https://doi.org/10.1016/j.jcrysgro.2004.12.086
Swagten, H. J. M., Twardowski, A., De Jonge, W. J. M., & Demianiuk, M. (1989). Magnetic properties of the diluted magnetic semiconductor Zn1-xFexSe. Physical Review B, 39(4), 2568–2577. https://doi.org/10.1103/PhysRevB.39.2568
Twardowski, A., Von Ortenberg, M., & Demianiuk, M. (1985). Magnetization of ZnFeSe semimagnetic semiconductors. Journal of Crystal Growth, 72(1–2), 401–404. https://doi.org/10.1016/0022-0248(85)90182-4
Yadav, A. N., Bindra, J. K., Jakhar, N., & Singh, K. (2020). Switching-on superparamagnetism in diluted magnetic Fe(iii ) doped CdSe quantum dots. CrystEngComm, 22(10), 1738–1745. https://doi.org/10.1039/C9CE01391A
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ibrahim Bagudo Muhammad, Abdullahi Tanimu, Aminu Yaradua Sabiru

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.