Shiff Base Metal Complexes Of Cu (II), Ni(II), and Zn(II) Drived From 2-Hydroxy Acetophenone and O-Phenylenediamine: Synthesis, Characterization, Antimicrobial and Molecular Docking
DOI:
https://doi.org/10.56919/usci.2541.034Keywords:
2-hydroxy Acetophenone, o-phenylenediamine, Staphyloccus aureus, Escherichia coli, Candida albican, Mucor indicus, Molecular dockingAbstract
Study’s Excerpt:
• The complexes show better interactions than the standard breast cancer drug.
• The complexes can be developed into drugs to cure cancer.
• The complexes have a better antimicrobial activity than the ligand.
Full Abstract:
Conductivity measurements, magnetic measurements, spectroscopic analysis, anti-bacterial, and molecular docking activities have been used to manufacture and analyse Cu(II), Ni(II), and Zn(II) Schiff base metal complexes generated from 2-Hydroxyacetophenone and O-phenylenediamine. The Schiff base's infrared spectra showed an azomethine peak at 1640 cm-1. The complexes' shifting of this band to higher or lower wave numbers suggested that the azomethine nitrogen was involved in coordination (M-N). New bands at 758-762 cm-1 in metal complexes have been attributed to the υ(M-N) mode. New bands at 660–700 cm-1 in metal complexes indicate the presence of the υ(M-O) mode. Metal complexes exhibit new bands at 3300-3200 cm-1 that are associated with the υ(OH) mode. Measurements of conductance (1.64 to 30.50 Ohm-1 cm2 mol-1) indicated that none of the complexes were electrolytic. Both the 1.9 B.M. (Cu (II)) and 3.6 B.M. (Ni (II)) magnetic susceptibility values are consistent with square planar geometry, and the metal-ligand ratio was verified as 1:1 using Jobs' method of continuous variation. The antimicrobial activity of the Schiff base and its metal chelates was tested against six pathogenic microorganisms (Escherichia coli, Candida albican, Mucor indicus, and Staphyloccus aureus). The complexes exhibited higher antimicrobial activity against the tested microbes, while the Schiff base exhibited moderate activity. The anti-cancer medication Tamoxifen was less effective than the complexes and ligand against human breast cancer cells (HER2-PY1196 4GFV).
References
Angelici, J. R. (1977). Synthesis and technique in inorganic chemistry (2nd ed., pp. 108–127). W. B. Saunders Company London.
Bernardo, Ribeiro da Cunha, Luís, P. Fonseca, Cecília, R. C. Calado. (2020). Metabolic fingerprinting with Fourier-transform infrared (FTIR) spectroscopy: Towards a high-throughput screening assay for antibiotic discovery and mechanism-of-action elucidation. https://doi.org/10.3390/metabo10040145
Collumn, A., & Zarei, M. (2013). Synthesis of novel azo Schiff base bis[5-(4-methoxyphenylazo)-2-hydroxy-3-methoxy benzaldehyde]-1,2-phenylenediimine. Molbank.
Daniel, V. P., Murukan, B., SindhuKumari, B., & Mohanan, K. (2008). Synthesis, spectroscopic characterization, electrochemical behaviour, reactivity and anti-bacterial activity of some transition metal complexes with 2-(N-salicylideneamino)-3-carboxyethyl-4,5 dimethylthiophene. Spectrochimica Acta A, 70, 403–410. https://doi.org/10.1016/j.saa.2007.11.003
Diab, M. A., Gehad, G., Mohamed, W. H., Mahmoud, A. Z., El‐Sonbati, A., Morgan, Sh. M., & Abbas, S. Y. (2019). Inner metal complexes of tetradentate Schiff base: Synthesis, characterization, biological activity and molecular docking studies. Applied Organometallic Chemistry, 33, e4945. https://doi.org/10.1002/aoc.4945
Golcu, A., Tumer, M., Demirelli, H., & Wheatley, R. A. (2005). Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity. Inorganica Chimica Acta, 358, 1785–1797. https://doi.org/10.1016/j.ica.2004.11.026
Grace, E. I. I., Terungwa, S. O., Olajire, S., Dooshima, S., & Mabel, K. Iyuana, I. J. I. S. R. (2015). 18, 117–121.
Hamil, A. M., Khalifa, K. M., AL-Houni, A., & El-ajaily, M. M. (2009). Synthesis, spectroscopic investigation and antiactivity activity of Schiff base complexes of cobalt (II) and copper (II) ions. Rasayan Journal of Chemistry, 2(2), 261–266. ISSN: 0974-1496.
Hassan, A. M., Ahmed, O. S., Heakal, B. H., Younis, A., Aboulthana, W. M., & Mady, M. F. (2022). Green synthesis, characterization, antimicrobial and anti-cancer screening of new metal complexes incorporating Schiff base. ACS Omega, 7(36). https://doi.org/10.1021/acsomega.2c03911
Imran, M., Liviu, M., Shoomaila, L., Zaid, M., Imtiaz, N., Sana, S. Z., & Surrya, F. (2010). Anti-bacterial Co(II), Ni(II), Cu(II) and Zn(II) complexes with biacetyl-derived Schiff bases. Journal of the Serbian Chemical Society, 75(8), 1075–1084. https://doi.org/10.2298/JSC091026098I
Iqbal, M., Syed, J., Khurshid, S., & Bakhtiar, M. Anti-inflammatory and selective COX-2 inhibitory activities of metal complexes of Schiff bases derived from aldoses. Medicinal Chemistry Research. https://doi.org/10.1007/s00044-012-0068-0
Khan SA, Asiri AM, Kumar S, Sharma K. (2014) Green synthesis, antimicrobial activity and computational study of Pyrazoline Pyramidine derivatives from 3(3,4-dimethoxyphenyl-1-(2,5-dimethylthiophen-3-yl)-propenone. European Journal of Chemistry; 5:85-90. https://doi.org/10.5155/eurjchem.5.1.85-90.789
Kiremire, E. M. R. L. S., Daniel, H., Muashekele, H., Chibale, K., & Kambafwile, H. (2009). Journal of Materials Science Research, 4, 263. https://doi.org/10.13005/msri/040205
Madhavi, S., Subramanian, K., & Sundaram, M. (2024). Quantum mechanical approaches and molecular docking studies of platinum-based anti-cancer drugs Satraplatin and picoplatin structures. Biochemical and Biophysical Research Communications, 739, 150969. https://doi.org/10.1016/j.bbrc.2024.150969
Manisha, Y., Swasti, D., & Eswari, J. S. (2020). Structure based drug design and molecular docking studies of anti-cancer molecules Paclitaxel, Etoposide and Topotecan using novel ligands. Current Drug Discovery Technologies, 17(2), 183–190. https://doi.org/10.2174/1570163816666190307102033
Diab, M. A., Mohamed, G. G., Mahmoud, W. H., El‐Sonbati, A. Z., Morgan, Sh. M., & Abbas, S. Y. (2019). Inner metal complexes of tetradentate Schiff base: Synthesis, characterization, biological activity and molecular docking studies. Applied Organometallic Chemistry, 33, e4945. https://doi.org/10.1002/aoc.4945
Neelakantan, M. A., Balamurugan, K., Balakrishnan, C., & Subha, L. (2018). Interaction of amino acid Schiff base metal complexes with DNA/BSA protein and anti-bacterial activity: Spectral studies, DFT calculations and molecular docking simulations. Applied Organometallic Chemistry, 32, e4259. https://doi.org/10.1002/aoc.4259
Mishra, A. P., & Jain, R. K. (2014). Conventional and microwave synthesis, spectral, thermal and antimicrobial studies of some transition metal complexes containing 2-amino-5-methylthiazole moiety. Journal of Saudi Chemical Society, 18, 814–824. https://doi.org/10.1016/j.jscs.2011.09.013
Ruma Sinha , Ambarish Sharan, Vidyarthi, Shankaracharya (2011).A molecular docking study of anticancer drug paclitaxel and its analogues Indian J Biochem Biophys Apr;48(2):101-5
Sinha, R., Sharan, A., & Vidyarthi, S. (2011). A molecular docking study of anti-cancer drug paclitaxel and its analogues. Indian Journal of Biochemistry and Biophysics, 48(2), 101–105.
Saranya, J., Kirubavathy, S. J., Chitra, S., Zarrouk, A., Kalpana, K., Lavanya, K., & Ravikiran, B. (2020). Tetradentate Schiff base complexes of transition metals for antimicrobial activity. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-020-04416-7
Schiff, H. (1864). Mittheilungen aus dem Universitäts-laboratorium in Pisa: 2. Eine neue Reihe organischer Basen [Communications from the university laboratory in Pisa: 2. A new series of organic bases]. Annalen der Chemie und Pharmacie, 131, 118–119. https://doi.org/10.1002/jlac.18641310113
Uddin, M. N., Ahmed, S. S., & Alam, S. M. R. (2020). REVIEW: Biomedical applications of Schiff base metal complexes. Journal of Coordination Chemistry, 73, 3109–3149. https://doi.org/10.1080/00958972.2020.1854745
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abubakar Ibrahim Mansur, Ishaq Lawan Yahaya, Sani Umar Sule, Asma’u Ali Alhakim

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.