Observation and Simulation of Mosquito Breeding Site Water Temperature for Malaria Transmission at Kaita Local Governmet Township of Katsina State, Nigeria

Authors

DOI:

https://doi.org/10.56919/usci.2123.015

Keywords:

water temperature; energy balance model; Mosquito’s larva development time and VECTRI model.

Abstract

Studies showed that transmission of malaria is influenced by environmental factors such as temperature. This work is aimed at finding the impact of mosquito's breeding site water temperature on mosquito's larva development time. An artificial mosquito's breeding habitat was created. The water temperature of the habitat was measured at an hourly interval, then it is averaged into daily time scale. Weather variables of the experimental site were inpu into the the energy balance model to simulate the breeding habit water temperature. The mosquito's larva development time was then predicted by inputting both the observed water and simulated water temperature into the vector borne disease community model (VECTRI) .The daily maximum, and minimum observed water temperatures were 27.9°C, 32.6°C and 21.7°C, respectively. The daily mean, maximum, and minimum simulated water temperatures were 29.8°C, 35.6°C, and 23.5°C respectively. These temperatures are within the temperature range that supports mosquito’s larva development. Mosquito's larva development was predicted using the VECTRI model. According to this study larva development reached completion in 7.1 days using the observed water temperature, 6.03 days using the simulated water temperature and 8.01days using the observed air temperature. This energy balance model is an improved water temperature scheme over the assumption that air temperature is equal to air temperature. This work shows the importance of water temperature and the value of degree day required for emergence of an adult mosquito in the simulation of aquatic stage development. Both the observed water and simulated water temperatures are higher than the on observed air temperature, thus air temperature cannot be used as the water temperature in the simulation of the mosquito’s larva development time. The finding of the work can be  used as source toward mosquito's larval control through water temperature. It is however clear from the finding that could be as result of temperature due to shorter time predicted for mosquito's larval development.

References

A. Mordecai Erin, P.Paaijmans Krijn, R. Johnson Leah, Balzer Christian, Horin Tal Ben, de Moor Emily, McNally Amy, Pawer Samraaat, J. Ryan Sadie, C. Smith Thomas, D. Lafferty Kelvin. 2013. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology letters 16:22-30. https://doi.org/10.1111/ele.12015

A. Mordecai Erin, P.Paaijmans Krijn, R. Johnson Leah, Balzer Christian, Horin Tal Ben, de Moor Emily, McNally Amy, Pawer Samraaat, J. Ryan Sadie, C. Smith Thomas, D. Lafferty Kelvin. 2013. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology letters 16:22-30.

https://doi.org/10.1111/ele.12015

A.Afrane Yaw, J. little Tom, W. Lawson Bernard, K.Githeko Andrew, Yan Guiyun, 2008. deforestation and vectorial Capacity of anopheles gambiea Giles mosquitoes in malaria transmission, Kenya. Emerging infectious diseases.www.cdc.gov/eid vol14, No.10.

https://doi.org/10.3201/eid1410.070781

Andrew, B. Thomas Matthew, N. Bjornstad Ottar, 2013. Effect of temperature on anopheles on mosquito population dynamic and the potential for malaria transmission. PLOS one 8(11), e79276. www.plosone.org

https://doi.org/10.1371/journal.pone.0079276

Bayoh MN, Lindsay SW, 2003. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensus stricto. Bull Entomol Res 93:375-82

https://doi.org/10.1079/BER2003259

Bayoh MN, Lindsay SW, 2004. Temperature related duration of aquatic stage of the afro tropical malaria vector mosquito anopheles gambiea in the laboratory. Medical and veterinary entomology 18 (2), 174 -179. https//doi.org/10.1111/j0269 - 283x. 2004.00495.

https://doi.org/10.1111/j.0269-283X.2004.00495.x

Blanford Justine, Blandford Simon, Crane Robert George, Mann Michael E, P. Paaijmans Krijn, Schreiber Kathleen V. Thomas Matthew Brian, 2013. Implication of temperature variation for malaria parasitedevelopment across. Scientific reports 3(1), 1-11, 2013

https://doi.org/10.1038/srep01300

Calvin C, (1939). Study the effect of waves on evaporation from free water, 70p.

Caroline Krefis Anne, Georg Schwarz Norbert, Kruger Andreas,Fobil Julius,Nkrumah Bernard, Acquah Samuel, Loag Wibke, Sarpong Nimako, Adu - Sarkodie Yaw, Ranft Ulrich, May Jurgen, 2011. Modelling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana: Am.J.Trop.med.Hyg.,84(2),2011, pp.285-291.

https://doi.org/10.4269/ajtmh.2011.10-0381

D. Mbouna Amele, M. Tompkins Adrian, Lenouo Andre, O. Asare ERnest, I. Yamba Edmund, Tchawoua Clement, 2019. modelled and observed mean and seasonal relationship between climate, population density and malaria indicators in Cameroon. Malaria Journal 18, 1 - 14.

https://doi.org/10.1186/s12936-019-2991-8

D. Teklehaimanot Hailay, Lipsitch Marc, Teklehaimanot Awash, schwartz Joel. 2004. weather based prediction of plasmodium falciparum malaria in epidemic prone region of Ethiopia. I. pattern of lagged weather effect reflect biological mechanism. Malaria Journal 3, 1-11.http://www.malariajournal.com/content/3/1/

https://doi.org/10.1186/1475-2875-3-44

Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Dushoff J,Billingly P, Mwambi H, Githure J, Toure AM, McKenzie FE, 2004. A simulation model of African Anopheles ecology and population dynamics for the of malaria transmission. Malaria Journal 3:29 https://doi.org/10.1186/1475-2875-3-29 Eling W, Hooghof J, Vegte - Bolmer M Van de, Sauerwein R, Van Gemert GJ,1995. Tropical temperatures can inhibit development of the human malaria parasite plasmodium falciparum in the mosquito. Entomological Society 12, 151 - 156. Gimning JE, Ombok M, Otieno S, Kaufman MG Vulule JM, Walker ED, 2002. Density dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39:162-72 https://doi.org/10.1603/0022-2585-39.1.162

Haddow A, 1943. Measurement of temperature and light in artificial fools with reference to the larval habitat of Anopheles (Myzomyia) gambiae , Giles, and A. (M.) funestus, Giles. Bull Entomol. Res 34:89-93

https://doi.org/10.1017/S0007485300023609

Haris Mazher Muhammad, Iqbal Javed, Ahsan Mahboob Muhammad, Atif Iqra, 2017. modelling spatio - temporal malaria risk using remote sensing and environmental factors. Iran J Public Health, vol.47, No. 9,pp.1281-1291.

J. Abiodun Gbenga, Maharaj Rajendra, Witbooi Peter, O.Okosun Kazeem. 2016. modelling the influence of temperature and rainfall on the population dynamics of Anopheles aranbiensis. Abiodun et al. Malaria Journal 15 (1) 1-15.

https://doi.org/10.1186/s12936-016-1411-6

K. Githeko Andrew, Ogallo Laban, Lemnge Martha,Okia Michael, N.Ototo Ednah, 2014. Development and validation of climate and ecosystem based early malaria epidemic prediction model in east Africa. Entheco et al. Malaria Journal 13, 1-11, http://www.malariajournal.com/content/13/1/329. https://doi.org/10.1186/1475-2875-13-329

K. Yamana Teresa, A.B Eltahir Elfatih,2013. Projected impact of climate change on environmental suitability for malaria transmission in west Africa. Environmental Health perspective 121 (10), 1197- 1189. https://doi.org/10.1289/ehp.1206174

K. Yamana Teresa, AB Eltahir Elfatih, 2013. incorporating the effect of humidity in mechanistic model of anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasites and Vectors 6(1) ,1-10.http://www.parasitesndvectors.com/content16/1/235. https://doi.org/10.1186/1756-3305-6-235

Kirby MJ, Lindsay SW, 2004. Response of adult mosquitoes of two sibling species, Anopheles aranbiensis and Anopheles gambiea ss (Diptera: Culicidae ), to higher temperatures. Bull Entomol Res 94:441-8 https://doi.org/10.1079/BER2004316

Kirby MJ, Lindsay SW, 2009. Effect of temperature and inter - specific competition on the development and survival of Anopheles gambiae ss and A. aranbiensis larvae. Acta Trop 109:118 - 23. https://doi.org/10.1016/j.actatropica.2008.09.025

Koenraadt C, Githeko A, Takken W, 2004. Effect of rainfall and evapotranspiration on the temporal dynamics of A. gambiae ss and A. aranbiensis in a Kenya village. Acta Tropica 90:141-53

https://doi.org/10.1016/j.actatropica.2003.11.007

Losordo TM, Piedrahita RH, 1991. Modelling temperature variation and thermal stratification in shallow aquaculture ponds. Ecol Model 54:189-226 https://doi.org/10.1016/0304-3800(91)90076-D Lyitmo E , Takken W, Koella J, 1992. Effect of rearing temperature and larval density on larval survival age pupation and adult size of Anopheles gambiae. Entomol Exp Appl 63:265-71

https://doi.org/10.1111/j.1570-7458.1992.tb01583.x

M. Beck - Johnson Lindsay, A. Nelson William, P. Paaijmans Krijn, F. Read Andrew, B. Thomas Matthew, N. Bjornstad Ottar, 2013. Effect of temperature on anopheles on mosquito population dynamic and the potential for malaria transmission. PLOS one 8(11), e79276. www.plosone.org

https://doi.org/10.1371/journal.pone.0079276

M. Beck Johson Lindsay, A. Nelson William, P. Paaijmans Krijn, F. Red Andrew, B Thomas Matthew, N. Bjornstad Ottar, 2017. The importance of temperature fluctuations in understanding mosquito population dynamic and malaria risk. R.soc.opensci.4:160969.

https://doi.org/10.1098/rsos.160969

Moiroux Nicolas, Boussari Olayide, Djenontin Armel, Damien Georgia, Cottrell Gilles, Claire Henry Marie, Guis Helene, Corbel Vncent.2012. Dry season determinant of malaria disease and Net use in Benin, west Africa. PLOS One 7 (1), e30558. www.plosene.org.

https://doi.org/10.1371/journal.pone.0030558

O. Asare Ernest, K. Amekudzi Leonard, 2017. assessing climate driven malaria variability in Ghana using a regional scale dynamical model. Climate 2017,5,20: doi:10.3390/cli5010020

https://doi.org/10.3390/cli5010020

O. Asare Ernest, M. Tompkins Adrian, K. Amekudzi Leonard, Ermert Volker, Redl Robert, 2016. Mosquito breeding site water observation and simulation toward improved vector borne disease model for Africa. Geospatial Health; volume 11(s1)391 https://doi.org/10.4081/gh.2016.391

O. Asare Ernest, M. Tompkins Adrian, K. Amekudzi Leonard, Ermert Volker, 2016. Breeding site model for regional dynamical malaria simulation evaluated using insitu temporary ponds observation. Geospatial Health 2016: volume 11(s1)390 https://doi.org/10.4081/gh.2016.390

P. Paaijmans Krijn, Jacobs AFG, Takken W, Heusinkveld BG, Githeko AK, Dicke M, Holtslag A.M, 2008. Observation and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya. Hydrological processes: An international journal 22 (24) 4789 - 4801, 2008. https://doi.org/10.1002/hyp.7099

P. Paaijmans Krijn, F. Read Andrew, B. Thomas Matthew, 2009. Understanding the link between malaria risk and climate. National Academic of Science 106 (33), 13844 - 13849.www.pnas.org/cgi/doi/10.1073/pnas.0903423106 https://doi.org/10.1073/pnas.0903423106

P. Paaijmans Krijn, G. Heusinkveld Bert, F.G Jacobs Adrie, 2008. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool. Int J biometeorol 52:797-803.

https://doi.org/10.1007/s00484-008-0173-4

P.Paaijmans Krijn, S Imbahale Susan, B. Thomas Matthew, Takken Willem, 2010. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implication of climate change. Malaria journal 9, 1 - 8. http://www.malariajournal.com/content/9/1/196.

https://doi.org/10.1186/1475-2875-9-196

S. Ngowo Halfan, WilsonKaindoa Emmanuel, Matthiopoulos Jason, M. ferguson Heather, O.Okuma Fredros, 2017. variation in household microclimate affect outdoor biting behaviour of malaria vectors. Welcome open research 2017, 2: 102 last updated: 18DEC2017.

https://doi.org/10.12688/wellcomeopenres.12928.1 T.H Chua. 2012. modelling the effect of temperature change on the extrinsic incubation period and reproductive number of plasmodium falciparum in Malaysia. Tropical Biomedicine: 121-128.

Downloads

Published

2023-03-30

How to Cite

Abubakar Ahmed, & Muhammad Bagudo, I. (2023). Observation and Simulation of Mosquito Breeding Site Water Temperature for Malaria Transmission at Kaita Local Governmet Township of Katsina State, Nigeria. UMYU Scientifica, 2(1), 124–132. https://doi.org/10.56919/usci.2123.015

Most read articles by the same author(s)