Infrared Light Absorption Enhancement in Crystalline Silicon Wafer Textured With H2SO4 Solution
DOI:
https://doi.org/10.56919/usci.2123.014Keywords:
Fourier transform infrared spectrometer, Aluminium-assisted chemical etching, Wet chemical anisotropic etching, Silicon wafer, Crystalline siliconAbstract
In recent years, the formation of microstructures on silicon wafer has gained popularity as a concept for increasing photon trapping and light absorption for optoelectronics applications. This study used three methods to improve infrared light absorption in silicon samples - sample preparation, Radio Corporation of America (RCA) cleaning, and chemical wet etching. The solutions used for Radio Corporation of America (RCA) clean were water (H2O), Ammonium hydroxide (NH4OH), hydrogen perioxide (H2O2), Hydrofluoric acid (H.F.). Three silicon wafers with a 1cm2 orientation were cut and cleaned using RCA, and then surface-textured using a wet chemical procedure by etching into different chemical solutions of Sulfuric acid (H2SO4) of the same concentration. The wafers were removed at different etching time intervals (5, 10, 15 minutes) and analysed using an infrared spectrometer with Fourier transformation (FTIR) to study the absorptions of light. A mean absorbance of 0.9801 a.u, 0.9845 a.u and 0.977 a.u for 5, 10 and 15 minutes of texturization was obtained. The results showed a wafer that was etched by H2SO4 solution for 10 minute as the most enhanced silicon wafer for I.R light absorption. Hence, it is recommended to texture a silicon wafer for a period of 10 minutes in H2SO4 solution for better absorption.
References
Abdur-Rahman, E., Alghoraibi, I., Alkurdi, H. (2020). Effect of isopropyl alcohol concentration and etching time on wet chemical anisotropic etching of low-resistivity crystalline silicon wafer. International Journal of Analytical Chemistry. vol 2017. issue. 16878779. Pages 9. https://doi.org/10.1155/2017/7542870.
Ali, A.A.O., He, Z., Hong, S., Chang, Y., Yu, J., Li, S., Ma, W., Liu, W., Elkolaly, W., Chen, R. (2021) Ultra-thin silicon wafer fabrication and inverted pyramid texturing based on cu-catalyzed chemical etching. Journal of solid state science and technology. Vol 12. ISSN: 18769918. Page 8-11. https://doi.org/10.1007/s12633-020-00429-x.
Ali, AA.O., Yang. Y., Sheng, G., Li, S., Yu, J., Ma, W., Qiu, J., El kolaly, W. (2020). Nano-Texturing of silicon wafers via one-step copper-Assisted chemical etching. Journal of solid state science and technology. Vol 9. ISSN:18769918. Page 75. https://doi.org/10.1007/s12633-019-00117-5.
Basher, M., Hossain, M., Uddin, M., Akand, M., Shorowordi, K. (2018) Effect of pyramidal texturing on the optical surface reflectance of mono-crystalline photovoltaic silicon wafers. International Journal of Analytical Chemistry. Vol 172. ISSN: 172 80181. Page 801-811. https://doi.org/10.1016/j.ijleo.2018.07.116.
Cao, Y., Liu, A., Li, H., Liu, Y., Qiao, F., Hu, Z., Sang, Y. (2011). Fabrication of silicon wafer with ultra low reflectance by chemical etching method. Applied surface Science. Vol 257. ISSN: 17. Page 7411-7414. https://doi.org/10.1016/j.apsusc.2011.02.102.
Dar, S.W., Yu, S.C., Peng, S.H., Quan, P.S., Guang, C.C. (2020). Effect of H2O2, Cu(NO3)2 and HF temperatures on surface texturization diamond-wire-sawn multi-crystalline silicon wafer. solar Energy materials and solar cells. Vol. 212. ISSN: 110583. Page 765-768. https://doi.org/10.1016/jsolmat.2020.110583.
Halbwax, M., Sarnet, T., Delaporte, P.H., Sentis, M., Etienne, H., Torregrosa, F., Vervisch, V., Perichaud, I., Martinuzzi, S. (2008) Micro and nano-structuration of silicon by femtosecond laser application to silicon photovoltaic cells fabrication. Thin solid Films. Vol 516. ISSN: 20. Page 6791-6795. https://doi.org/10.1016/j.tsf.2007.12.117.
Han, H., Huang, Z., Lee, W. (2014). Metal-assisted chemical etching of silicon and nanotechnology applications. Elsevier. Vol 9. ISSN: 3. Page. 271-304. https://doi.org/10.1016/j.nantod.2014.04.013.
Hsu, C., Liu, S., Zhang, X., Cho, Y., Huang, Y., Zhang, S., Zhu, W. (2019). Low reflectance and low surface recombination rate nano-needle texture formed by two-step etching for solar cell. Nanomaterials. Vol 9. ISSN: 10. Page 1392. https://doi.org/10.3390/nano9101392.
Liman, N.C., Ibrahim, K., (2014). Infrared transmission through PMMA/SiO2 for the applications in solar cells technology: Fourier Transform Infra-red (FTIR) Spectroscopy. International conference of Global Network for innovative Technology (IGNITE 2014). Vol 978-967-0167-14-5.
Liu, H., Zhao, L., Wang, W. (2020). HF/Hcl/H2O/MnO2 system for High-performance Texturization on Multi-crystallin Silicon. ECS Journal of solid state science and technology. Vol 9. ISSN: 125002. Page 567. https://doi.org/10.1149/2162-8777/abc80c.
Muller, A., Ghosh, M., Sonnenschein, R., Woditsch, P. (2006). Silicon for photovoltaic applications. Materials science and Engineering: B. Vol 134. ISSN: 2-3. Pages 257-262. https://doi.org/10.1016/j.mseb.2006.06054.
Pal, P., Swarnalatha, V., Venkata, A., Rao, N., Kumar, A.P., Tanaka, H., Sato, K. (2021). High speed silicon wet anisotropic etching for application in bulk micromachining: a review. Micro and Nano systems letters. Vol 2021. ISSN: 9. Page 4. https://doi.org/10.1186/s40486-021-00129-0.
Praveenkumar, S., Lingaraja, D., Mathi, M.P., Ram, D.G. (2019). An experimental study of optoelectronic properties of porous silicon for solar cell application. Optik. Vol 178. Page 216-223. https://doi.org/10.1016/j.ijleo.2018.09.176.
Schroop, R.E.I & Zeman, M. (1998). Amorphous and microcrystalline silicon solar cells: Modeling, Materials and Device Technology. Technology of solar cells. Vol 5. ISSN: 1386-3290. Page 3-7. https://doi.org/10.1007/978-1-4615-5631-2.
Uddin, M., Roslan, Md.H., Zamir, M.P. (2021). Effect of annealing temperature towards properties of black silicon fabricated by aluminium-assisted chemical etching. Materials Science in semiconductor processing. Vol 133. ISSN: 105932. Page 5-8. https://doi.org/10.1016/j.mssp.2021.105932.
Wei, H.W., Yen, H., Kai, P.L., Wang, L. (2022). Formation of inverted pyramid-like structures on surfaces of single crystalline silicon solar cells by chemical wet etching. Journal of Renewable and sustainable energy. Vol 14. ISSN: 013501. https://doi.org/10.1063/5.0064787.
Wei, x., Xiao, Z., Yue, Z., Huang, H., Zhou, L., material science in semiconductor(2020)115, Texturization of diamond wire sawn multi-crystalline silicon wafers by micro-droplet etching.
Yasir, Md.A., Aminul Islam, M., Wafi, A.M., Abdullah, F., Sieh, T.K., Amin, N. (2021). Study of black silicon wafer through wet chemical etching for parametric optimization in enhancing solar cell performance by pc1d numerical simulation. Crystals. Vol 11. ISSN: 8. Page 881. https://doi.org/10.3390/cryst11080881.
Zhao, J., Wang, A., Martin, A.G. (1998). 19.8% efficient “honeycomb” textured multi-crystalline and 24.4% mono-crystalline silicon solar cells. Applied physics letters. Vol 73. ISSN: 1077-3118. Page 1991-1993. https://doi.org/10.1063/1.122345.
Zou, S., Ye, X., Su, X. (2019). Complement etching behavior of alkali, metal-catalyzed chemical, and post-etching of multi-crystalline silicon wafer. Progress in photovoltaic’s: Research and Applications. Vol 27. ISSN: 6. Page 511-519. https://doi.org/10.1002/pip.3125.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.