Developing the Third Order Linear and Nonlinear Fuzzy Ordinary Differential Equations in Hilbert Space by the Extension Principle.

Authors

  • Habibu Hassan Department of Mathematics, College of Education, Waka-Biu, Borno State, Nigeria
  • Alhaji Tahir Department of Mathematics, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria.

DOI:

https://doi.org/10.56919/usci.2323.012

Keywords:

Fuzzy Ordinary Differential Equation, Extension Principle, Hilbert Space

Abstract

In this study, a third nonlinear fuzzy ordinary differential equation is defined and established in Hilbert space using extension principle. The results obtained gives clear distinction between this work and the existing ones in the literature an example is formulated which shows that a closed subset of a Hilbert space is a Hilbert Space. It is recommended that future study should consider the development of system of third order linear and nonlinear fuzzy ordinary differential equations in Hilbert space by the extension principle.

 

References

Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20, 3283-3302. https://doi.org/10.1007/s00500-015-1707-4

Ahmadian, A., Salahshour, S., Chan, C.S., Baleanu, D. (2018). Numerical solutions of fuzzy differential equations by an efficient Runge-Kutta method with generalized differentiability. Fuzzy Sets Syst. 331, 47-67. https://doi.org/10.1016/j.fss.2016.11.013

Anke, K., Rainer P., Stefan, S., Sascha T. and Marcus, W. (2012). A Hilbert space perspective on ordinary differential equations with memory term. institut für analysis, fachrichtung mathematic technische universität Dresden Germany at: https://www.researchgate.net/publication/224014343

Buckley J. J. and Feuring, T. (2000). Fuzzy differential equations, Fuzzy Sets Syst., vol. 110, pp. 43-54. https://doi.org/10.1016/S0165-0114(98)00141-9

ElJaoui, E., Melliani, S. & Chadli, L. S. (2015). Solving second-order fuzzy differential equations by the fuzzy Laplace transform method, Springer journal of advances in difference equations. https://doi.org/10.1186/s13662-015-0414-x

Gumah, G., Naser, M.F.M., Al-Smadi, M., Al-Omari, S.K.Q., Baleanu, D.: Numerical solutions of hybrid fuzzy differential equations in a Hilbert space. Appl. Numer. Math. 17 151, 402-412 (2020). https://doi.org/10.1016/j.apnum.2020.01.008

John B. C. (1990). A Course in functional Analysis Second Edition, Springer.

Kai, D., Konrad, K., Rainer P., Stefan, S., Sascha, T. and Marcus, W. (2019). A Hilbert space approach to fractional differential equations, 110-119. https://www.researchgate.net/publication/335880924

Kandel A. and Byatt, W. J. (1978). Fuzzy differential equations, in Proc. Int. Conf. Cybern. Soc., Tokyo, Japan, pp. 1213_1216.

Khastan, A., Rodríguez-López, R.: On the solutions to first order linear fuzzy differential equations. Fuzzy Sets Syst. 295, 114-135 (2016). https://doi.org/10.1016/j.fss.2015.06.005

John B. C. (1990). A Course in functional Analysis Second Edition, Springer.

Puri M. L. and Ralescu, D. A. (1983). Differentials of fuzzy functions, J. Math. Anal. Appl., vol. 91, no. 2, pp. 552_558. https://doi.org/10.1016/0022-247X(83)90169-5

Serge, N. (1989). Differential Equations in Hilbert Spaces and Applications to Boundary Value Problems in Non smooth Domains. Mathematiques press et appliqees, Universite des sciences et Techniques de lille Flandres Artois, 751-775.

Seikkala S. (1987). On the fuzzy initial value problem,Fuzzy Sets Syst., vol. 24, no. 3, pp. 319_330. https://doi.org/10.1016/0165-0114(87)90030-3

Thomas, S. (1975). The solution of singular equations and linear equations in hilbert space. Pacific Journal of Mathematics Vol. 61, No. 2, 513-520.https://doi.org/10.2140/pjm.1975.61.513

Downloads

Published

2023-09-30

How to Cite

Hassan, H., & Tahir, A. (2023). Developing the Third Order Linear and Nonlinear Fuzzy Ordinary Differential Equations in Hilbert Space by the Extension Principle. UMYU Scientifica, 2(3), 71–75. https://doi.org/10.56919/usci.2323.012