Developing the Third Order Linear and Nonlinear Fuzzy Ordinary Differential Equations in Hilbert Space by the Extension Principle.
DOI:
https://doi.org/10.56919/usci.2323.012Keywords:
Fuzzy Ordinary Differential Equation, Extension Principle, Hilbert SpaceAbstract
In this study, a third nonlinear fuzzy ordinary differential equation is defined and established in Hilbert space using extension principle. The results obtained gives clear distinction between this work and the existing ones in the literature an example is formulated which shows that a closed subset of a Hilbert space is a Hilbert Space. It is recommended that future study should consider the development of system of third order linear and nonlinear fuzzy ordinary differential equations in Hilbert space by the extension principle.
References
Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20, 3283-3302. https://doi.org/10.1007/s00500-015-1707-4
Ahmadian, A., Salahshour, S., Chan, C.S., Baleanu, D. (2018). Numerical solutions of fuzzy differential equations by an efficient Runge-Kutta method with generalized differentiability. Fuzzy Sets Syst. 331, 47-67. https://doi.org/10.1016/j.fss.2016.11.013
Anke, K., Rainer P., Stefan, S., Sascha T. and Marcus, W. (2012). A Hilbert space perspective on ordinary differential equations with memory term. institut für analysis, fachrichtung mathematic technische universität Dresden Germany at: https://www.researchgate.net/publication/224014343
Buckley J. J. and Feuring, T. (2000). Fuzzy differential equations, Fuzzy Sets Syst., vol. 110, pp. 43-54. https://doi.org/10.1016/S0165-0114(98)00141-9
ElJaoui, E., Melliani, S. & Chadli, L. S. (2015). Solving second-order fuzzy differential equations by the fuzzy Laplace transform method, Springer journal of advances in difference equations. https://doi.org/10.1186/s13662-015-0414-x
Gumah, G., Naser, M.F.M., Al-Smadi, M., Al-Omari, S.K.Q., Baleanu, D.: Numerical solutions of hybrid fuzzy differential equations in a Hilbert space. Appl. Numer. Math. 17 151, 402-412 (2020). https://doi.org/10.1016/j.apnum.2020.01.008
John B. C. (1990). A Course in functional Analysis Second Edition, Springer.
Kai, D., Konrad, K., Rainer P., Stefan, S., Sascha, T. and Marcus, W. (2019). A Hilbert space approach to fractional differential equations, 110-119. https://www.researchgate.net/publication/335880924
Kandel A. and Byatt, W. J. (1978). Fuzzy differential equations, in Proc. Int. Conf. Cybern. Soc., Tokyo, Japan, pp. 1213_1216.
Khastan, A., Rodríguez-López, R.: On the solutions to first order linear fuzzy differential equations. Fuzzy Sets Syst. 295, 114-135 (2016). https://doi.org/10.1016/j.fss.2015.06.005
John B. C. (1990). A Course in functional Analysis Second Edition, Springer.
Puri M. L. and Ralescu, D. A. (1983). Differentials of fuzzy functions, J. Math. Anal. Appl., vol. 91, no. 2, pp. 552_558. https://doi.org/10.1016/0022-247X(83)90169-5
Serge, N. (1989). Differential Equations in Hilbert Spaces and Applications to Boundary Value Problems in Non smooth Domains. Mathematiques press et appliqees, Universite des sciences et Techniques de lille Flandres Artois, 751-775.
Seikkala S. (1987). On the fuzzy initial value problem,Fuzzy Sets Syst., vol. 24, no. 3, pp. 319_330. https://doi.org/10.1016/0165-0114(87)90030-3
Thomas, S. (1975). The solution of singular equations and linear equations in hilbert space. Pacific Journal of Mathematics Vol. 61, No. 2, 513-520.https://doi.org/10.2140/pjm.1975.61.513
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.