A DFT+U Study of the Structural and Electronic Properties of Zinc Doped Anatase TiO2 Nanomaterial
DOI:
https://doi.org/10.56919/usci.2431.020Keywords:
Structural properties, Electronic properties, Titanium dioxide, Density functional theory, DopingAbstract
This work reports a theoretical study on the structural and electronic properties of the anatase phase of titanium dioxide (TiO2) within the framework of density functional theory corrected for on-site coulomb interactions in strongly correlated materials (DFT+U). The exchange correlation was described by local density approximation (LDA). The optimized lattice parameters obtained for the pure anatase TiO2 agree with the experimental data. Our results revealed that, after the zinc doping, the structure didn't change but there was a little expansion in the volume of the pure material. It was found that the doped structure's stability increases as the concentration of the dopant increases, but all the doped structures are stable. However, introducing the zinc dopant has significantly reduced the band gap of the pure anatase by 80.7 %, 80 %, and 78.6 % due to 0.25, 0.5, and 0.75 doping concentrations, respectively. This implies that the band gap energy increases as the doping concentration increases.
References
Al-Attafi, K., Nattestad, A., Wu, Q., Ide, Y., Yamauchi, Y., Dou, S. X., & Kim, J. H., (2018). The Effect of Amorphous TiO2 in P25 on Dye-Sensitized Solar Cell Performance. Chemical Communications, 54,381-384. https://doi.org/10.1039/C7CC07559F
Aware, D.V. & Jadhav, S. S. (2016). Synthesis, Characterization and Photocatalytic Applications of Zn doped TiO2 Nanoparticles by Sol-gel Method. Applied Nanoscience, 6, 965-972.https://doi.org/10.1007/s13204-015-0513-8
Bai, J. & Zhou, B., (2014). Titanium Dioxide Nanomaterials for Sensor Applications. Chemical Reviews, 114, 10131-10176. https://doi.org/10.1021/cr400625j
Beltran, A., Gracia, L. & Andres, J. (2006). Density Functional Theory Study of the Brookite Surfaces and Phase Transitions Between Natural Titania Polymorphs. Journal of physical chemistry B, 110(46), 23417-23423. https://doi.org/10.1021/jp0643000
Carneiro J.O, Teixeira V., Portinha A., Dupak L., Magalhaes A. & Coutinho P. (2005). Study of the Deposition Parameters and Fe-dopant Effect in the Photocatalytic Activity of TiO2 Films Prepared by DC Reactive Magnetron Sputtering. Vacuum,78, 37- 46. https://doi.org/10.1016/j.vacuum.2004.12.012
Dantong, Z., Zhi, C., Tong, G., Feng, N., Laishun, Q., & Yuexiang, H. (2015). Hydrogen Generation from Water Splitting on TiO2 Nanotube-Array-Based photocatalyts. Energy Technology, 3(9),888-895.https://doi.org/10.1002/ente.201500145
Daude,N., Gout C. & Jouanin C. (1977). Electronic Band Structure of Titanium dioxide. Physical Review B,15, 3229. https://doi.org/10.1103/PhysRevB.15.3229
Dorian, A. H. H., Mohammed, H. N. A., Sean, L., Aibing, Y. & Charles, C. S. (2012). Ab initio Study of Phase Stability in Doped TiO2. Computational Mechanics. 50(2),185-194. https://doi.org/10.1007/s00466-012-0728-4
Fujishima, A, & Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 283: 37-38. https://doi.org/10.1038/238037a0
Hao C., Xuechao L., Rundong W., Sharon K-W., & Ying L. (2017). A DFT Study of the Electronic Structures and Optical Properties of (Cr, C) Co-doped Rutile TiO2. Chemical Physics, 501.https://doi.org/10.1016/j.chemphys.2017.11.021
Howard, C. J., Sabine , T. M. & Dickson F. (1991). Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallographica, B47, 462-468. https://doi.org/10.1107/S010876819100335X
Kominami, H., Kohno, M., & Kera, Y. (2000). Synthesis of Brookite-type Titanium Oxide Nano Crystals in Organic Media., Journal of Materials Chemistry, 10, 1151-1156. https://doi.org/10.1039/a908528i
Landmann M., Rauls E. & Schmidt W. G. (2012). The Electronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2. Journal of Physics: Condensed Matter, 24, 195503.https://doi.org/10.1088/0953-8984/24/19/195503
Lee M.S., Hong S.S. & Mohseni M. (2005). Synthesis of Photocatalytic Nanosized TiO2 -Ag Particles with Sol-gel Method Using Reduction Agent. Journal Molecular Catalyst A, 242, 135-140.https://doi.org/10.1016/j.molcata.2005.07.038
Lettmann C., Hildebrand K., Kisch H., Macyk W. & Maier W.(2001). Visible Light Photodegradation of 4-chlorophenol with a Coke-Containing Titanium Dioxide Photocatalyst. Applied Catalyst B, 32, 215-227.https://doi.org/10.1016/S0926-3373(01)00141-2
Li X.Z, & Li F.B. (2001). Study of Au/Au3+ - TiO2 Photocatalysts Towards Visible Photooxidation for Water and Wastewater Treatment. Environ 2 Science Technology, 35, 2381-2387.https://doi.org/10.1021/es001752w
Li X. Z & Li F. B. (2002). The Enhancement of Photodegradation Efficiency Using Pt-TiO2 Catalyst. Chemosphere, 48, 1103-1111. https://doi.org/10.1016/S0045-6535(02)00201-1
Meesombad K., Sato N., Pitiphattharabun, S., Panomsuwan, G., Techapiesancharoenkij, R., Surawathanawises, K.,Wongchoosuk, C., Boonsalee, S., Pee, J.H., Jongprateep, O. (2021). Zn-doped TiO2 nanoparticles for Glutamate Sensors. Ceramics International, 47(15), 21099- 21107. https://doi.org/10.1016/j.ceramint.2021.04.113
Monkhorst, H. J. & Pack, J. D. (1976). Special points for Brilloun-zone integrations. Physical review B, 13(12), 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
Navarra,W., Ritacco, I., Sacco, O.,Caporaso, L., Camellone,M.F., Venditto, V. & Vaiano, V. (2022). Density Functional Theory Study and Photocatalytic Activity of ZnO/N-Doped TiO2 Heterojunctions. Journal of Physical Chemistry C, 126(16),7000-7011. https://doi.org/10.1021/acs.jpcc.2c00152
Nura H., Abdu S. G., Shuaibu A. & Abubakar M. S.(2019). Electronic Band Structure and Optical Properties of Titanium dioxide. Science World Journal, 14(3).https://www.scienceworldjournal.org/issue/view/1515
Othmen k., Abdelkader M., & Tarek L. (2021). Theoretical and experimental investigation of the electronic, optical, electric, and elastic properties of Zn-doped anatase TiO2 for photocatalytic applications. Applied Physics A, 127-557. https://doi.org/10.1007/s00339-021-04721-4.
Paola, G., Stefano, B., Nicola. B., Matteo, C., Roberto, C., Carlo, C., Davide, C., Guido, L. C., Matteo, C., & Ismail, D. (2009). Quantum ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulation of Materials. Journal of Physics: Condensed Matter, 21, 395502. https://doi.org/10.1088/0953-8984/21/39/395502
Pascual, J., Camassel, J. & Mathieu H. (1978). Piezospectroscopic Investigation of Nature of the Subsidiary Valence Band Extrema in TiO2. Solid State Communications. 28(3), 239-241.https://doi.org/10.1016/0038-1098(78)90634-8
Qing, G., Chuanyao, Z., Zhibo, & M., Xueming, Y. (2019). Fundamentals of TiO2 Photocatalysis: Concepts,mechanisms and challenges. Advanced Materials, 3(50), 1901997.DOI:10.1002/adma.201901997
Rauf, M.A., Meetani, M. A. & Hisaindee, S. 2011). An Overview on the Photocatalytic Degradation of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals. Desalination, 276, 13-27.https://doi.org/10.1016/j.desal.2011.03.071
Sasanka, P., Haritha, B. D., Kumudu, N. R., Sanjaya, V. B. & Ishanie, R. P. (2021). Recent Development and Future Prospects of TiO2 Photocatalysis. Journal of the Chinese Chemical Society, 68(5), 738-769.https://doi.org/10.1002/jccs.202000465
Sharma, S. B., Qattan, I. A., Jaoude, M.A. & Abedrabbo, S. (2023). First-Principles DFT Study of Structural, Electronic and Optical Properties of Cu-doped TiO2 (112) Surface for Enhanced Visible-Light Photocatalysis. Computational Materials Science, 218, 111952.https://doi.org/10.1016/j.commatsci.2022.111952
Tang, H., Prasad, K., Sanjines, R., & Levy, F., (1995).TiO2 Anatase Thin Films as Gas Sensors. Sensors and Actuators B: Chemical, 26, 71-75. https://doi.org/10.1016/0925-4005(94)01559-Z
Takeshita K, Yamakata A, Ishibashi T, Onishu H, Nishijima K, Ohno T. & Transient I.R .(2006). Absorption Study of Charge Carriers Photo-Generated in Sulfur-Doped TiO2. Journal of Photochem Photobiol, 177, 269-275. https://doi.org/10.1016/j.jphotochem.2005.06.006
Takeshi M., Ryoji A., Takeshi O., Koyu A. & Yasunori T. (2001). Band-gap Narrowing of Titanium Dioxide by Nitrogen Doping. Japanese Journal of Applied Physics, 40, L561.https://doi.org/10.1143/JJAP.40.L561
Treschev S.Y, Chou P.W, Tseng T.H, Wang J.B, Perevedentseva E.V, Cheng C.L. (2008). Photoactivities of the Visible Light-Activated Mixed-Phase Carbon-Containing Titanium Dioxide: The Effect of Carbon Incorporation. Applied Catalyst B, 79, 8-16. https://doi.org/10.1016/j.apcatb.2007.09.046
Tunkay D., Ozan, Y., Alper, A., Selim, D.,Serdar, G., Serdar & Y., Metin Y. (2022). Production of Zn-doped TiO2 Film with Enhanced Photocatalytic Activity. Journal of the Australian Ceramic Society, 58, 1415-1421. https://doi.org/10.1007/s41779-022-00712-7
Vivek C., Pau F. & Mingming T .(2023). First-principles study of electronic properties of Zn and La
doped and co-doped anatase TiO2 AIP Advances 13, 125013. https://doi.org/10.1063/5.0174393
Wu Z, Dong F, Zhao W, & Guo S. (2008). Visible Light Induced Electron Transfer Process Over Nitrogen Doped TiO2 Nanocrystals Prepared by Oxidation of Titanium Nitride. J Haz Mat., 157(1), 57-63. https://doi.org/10.1016/j.jhazmat.2007.12.079
Wu J.C-S, & Chen C.H. (2004). A Visible-Light Response Vanadium-Doped Titania Nanocatalyst by Sol-gel Method. J Photochem Photobiol A; 163: 509-515.https://doi.org/10.1016/j.jphotochem.2004.02.007
Yu J, Zhou M, Cheng B, & Zhao X. (2006). Preparation, Characterization and Photocatalytic Activity of In situ N, S-codoped TiO2 Powders. J Mol Catal A, 246, 176-184.https://doi.org/10.1016/j.molcata.2005.10.034
Zaleska A, Sobczak JW, Grabowska E. & Hupka J.(2007). Preparation and Photocatalytic Activity of Boron-Modified TiO2 Under UV and Visible Light. Appl Catal B, 78, 92-100. https://doi.org/10.1016/j.apcatb.2007.09.005
Zhang, C., Wang, C-L., Li, J.-C. & Yang, K. (2007). Structural and electronic properties of Fe-doped BaTiO3 and SrTiO3. Chinese physics, 16(5), 1422-1428. https://doi.org/10.1088/1009-1963/16/5/042
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.