Agronomic and Molecular Characterization of Sweet Potato (Ipomoea batatas [L.] Lam) Varieties in Nigeria

Authors

DOI:

https://doi.org/10.56919/usci.2432.001

Keywords:

Agronomic traits, dendrogram, molecular markers, morphological markers, parental combination

Abstract

Study’s Excerpt/Novelty

  • This study addresses the breeding challenges of sweet potato (Ipomoea batatas) by utilizing agronomic, morphological, and molecular data to identify optimal parental combinations for enhanced cross-breeding.
  • The research demonstrated significant variations and strong correlations among agronomic traits, with principal component analysis revealing complete variability at the fifth principal component.
  • Key findings include the identification of TIS 8164 and TIS 0087/087 as closely related varieties, while molecular characterization highlighted Nwaoyinma and Umuspo 1 as promising parental combinations, providing a foundation for improved breeding strategies in sweet potato cultivation.

Full Abstract

Sweet potato (Ipomoea batatas [L.] Lam.); 2n = 6x = 90) is a significant root crop globally. However, breeding and cross-breeding of the crop are difficult due to its enormous, complex genome and highly heterozygous hexaploid genetic makeup. This study used data on agronomic traits and morphological and molecular characterization to determine the best parental combinations for improved breeding and cross-breeding of the crop. Agronomic traits analysis and morphological characterization were carried out in the research farm while molecular analysis was done in the molecular biology laboratory. Results of the study show significant variations (p-value = 0.000) and a strong positive correlation among the majority of the agronomic traits and morphological characters, principal component analysis shows 100% variability at the 5th principal component, a dendrogram of agronomic traits analysis shows that TIS 8164 and TIS 0087/087 varieties are about 76% similar and Dixon variety is approximately 66.67% similar to the Umuspo 1 and the Butter Milk varieties, morphological characterization shows 37% similarity between the Umuspo 1 variety and the TIS 8164 variety, polymorphic information content shows polymorphism of 42.86% for IBS166 primer, 28.5% for IB02 primer and 14.29% for IBS199 and Ibu4 primers respectively, a dendrogram of molecular characterization shows no similarity between the Umuspo 1 variety and the other variety and 100% similarity between the TIS 8164 and the TIS 0087/087 varieties. The study concluded that the Nwaoyinma and the Umuspo 1 varieties are good parental combinations

References

Afolabi, M.S., Agbowuro, G.O., Abimbola, O.O. and Afuape, S.O. (2023). Evaluation of yield and nutritional components of some hybrids and parental genotypes of sweet potato (Ipomoea batata L.). Ife Journal of Agriculture, 35, 72 – 83.

Alfred, U.J., Iheukumere, C.C., Aguoru, C.U., Olasan, O.J. and Sesugh, U.M. (2019). Diversity analysis of sweet potato (Ipomoea batatas [L.] lam) accessions from north central Nigeria using morphological and simple sequence repeats markers. Asian Journal of Biotechnology and Genetic Engineering, 2, 1-15.

Alfred, U., Ekeruo, G., Ameh, S. and Amos, S. (2018). Comparative optimized DNA isolation protocols for six accessions of sweet potato (Ipomoea batatas [L] Lam.) in Nigeria using FTA plant saver card and DNA zol. International journal of life sciences research, 6, 155-160.

Anglin, N.L., Robles, R., Rossel, G., Alagon, R., Panta, A., Jarret, R.L., Manrique, N. and Ellis, D.D. (2021). Genetic identity, diversity, and population structure of CIP’s sweet potato (I. batatas) germplasm collection. Frontier of Plant Science, 12, 1 – 15. https://doi.org/10.3389/fpls.2021.660012

Barb, J. (2016). Sweetpotato breeding In crop improvement, interactive e-learning courseware. Plant breeding e-learning in Africa. https://www.pbea.agron.iastate.edu

Chen, M., Fan, W., Ji, F., Hua, H., Liu, J., Yan, M., Ma, Q., Fan, J., Wang, Q. and Zhang, S. (2021). Genome-wide identification of agronomically important genes in outcrossing crops using OutcrossSeq. Mol. Plant, 14, 556 – 570. https://doi.org/10.1016/j.molp.2021.01.003

da Silva Pereira, G., Gemenet, D.C., Mollinari, M., Olukolu, B.A., Wood, J.C., Diaz, F., Mosquera, V., Gruneberg, W.J., Khan, A. and Buell, C.R. (2020). Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweet potato full-sib population. Genetics, 215, 579–595. https://doi.org/10.1534/genetics.120.303080

Elisângela, K.V., Valter, C., Marcelo, L., José, S.C.F., Altino, J.M.O. and Alcinei, M.A. (2017). Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. Acta Scientiarum. Agronomy, 4: 447 - 455.

FAOSTAT. (2020). FAOSTAT. https://www.faostat.fao.org/site/612/default.aspxancor

Fekadu, G., Hussein, S. and Mark, L. (2018). Combining ability, heterosis and heritability of storage root dry matter, beta-carotene and yield-related traits in Sweet potato. Horticultural Science, 53, 167-175.

Feng, J., Zhao, S., Li, M., Zhang, C., Qu, H., Li, Q., Li, J., Lin, Y. and Pu, Z. (2020). Genome-wide genetic diversity detection and population structure analysis in sweet potato (Ipomoea batatas) using RAD-seq. Genomics, 112, 1978–1987. https://doi.org/ 10.1016/j.ygeno.2019.11.010.

Feng, J.Y., Li, M., Zhao, S., Zhang, C., Yang, S.T., Qiao, S., Tan, W.F., Qu, H.J., Wang, D.Y. and Pu, Z.G. (2018). Analysis of evolution and genetic diversity of sweet potato and its related different polyploidy wild species I. trifida using RAD-seq. BMC Plant Biology, 18: 181–212. https://doi.org/10.1186/s12870-018-1399-x.

Food and Agriculture Organization of the United Nations. 2019. FAOSTAT statistics database. https://www.fao.org/faostat/%20Advance%20Access.

Gemenet, D.C., da Silva Pereira, G., De Boeck, B., Wood, J.C., Mollinari, M., Olukolu, B.A., Diaz, F., Mosquera, V., Ssali, R.T. and David, M. (2020). Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated b-carotene and starch content in hexaploid sweet potato [Ipomoea batatas (L.) Lam.]. Theoretical and Applied Genetics, 133: 23–36. https://doi.org/10.1007/s00122-019-03437-7.

Katayama, K., Kobayashi, A., Sakai, T., Kuranouchi, T. and Kai, Y. (2017). Recent progress in sweet potato breeding and cultivars for diverse applications in Japan. Breeding Science, 67, 3 – 14. https://doi.org/10.1270/jsbbs.16129.

Kitahara, K., Nakamura, Y., Otani, M., Hamada, T., Nakayachi, O. and Takahata, Y. (2017). Carbohydrate components in sweet potato storage roots: their diversities and genetic improvement. Breeding Science, 67: 62–72.

Kouassi, J.H.M., Boyé, M.A-D., Dibi, K.E.B., Essis, B.S., Kouakou, A.M., N’zué, B. and Litché, W.D. (2023). Agronomic evaluation sweet potato (Ipomoea batatas (L) Lam.) genotypes in two agro-ecological zones of Côte d’Ivoire. World Journal of Advanced Research and Reviews, 17, 208 – 218. https://doi.org/10.30574/wjarr.2023.17.2.0194

Koussao, S., Vernon, G., Isaac, A., Eric, Y.D., Jeremy, T.O., Tignegre, J.B., Belem, J. and Tarpaga, M.V. (2014). Diversity analysis of sweet potato (Ipomoea batatas [L.] Lam) germplasm from Burkina Faso using morphological and simple sequence repeats markers. African Journal of Biotechnology, 13, 729 – 742.

Kurabachew, H. (2015). The role of orange fleshed sweet potato (Ipomea batatas) for combating vitamin A deficiency in Ethiopia: a review. International Journal of Food Science, Nutrition and Engineering, 5, 141–146.

Lee, K.J., Lee, G., Lee, J., Sebastin, R., Shin, M., Cho, G. and Hyun, D.Y. (2019). Genetic diversity of sweet potato (Ipomoea Batatas L. Lam) germplasms collected worldwide using chloroplast SSR markers. Agronomy.

Li, H., Zhao, N., Yu, X., Liu, Y., Zhai, H., He, S., Li, Q., Ma, D. and Liu, Q. (2014). Identification of QTLs for storage root yield in sweet potato. Science and Horticulture (Amsterdam), 170, 182–188. https://doi.org/10.1016/j.scienta.2014.03.017.

Liu, J., Fernie, A.R. and Yan, J. (2020). The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement. Plant Communication, 1, 100010 – 100019. https://doi.org/10.1016/j.xplc.2019.100010.

Marian, D.Q., Kwadwo, A., David, A-K., Ruth, N.P., John, A-A., Belinda, A. and Harrison, D. (2018). Use of expressed sequence tags-derived simple sequence repeat (SSR) markers for population studies of released and elite sweet potato. International Journal of Genetics and Molecular Biology, 10, 14 – 25. https://doi.org//10.5897/ijgmb2017.0159.

Mores, A., Borrelli, G.M., Laido`, G., Petruzzino, G., Pecchioni, N., Amoroso, L.G.M., Desiderio, F., Mazzucotelli, E., Mastrangelo, A.M. and Marone, D. (2021). Genomic approaches to identify molecular bases of crop resistance to diseases and to develop future breeding strategies. International Journal of Molecular Science, 22: 5423. https://doi.org/10.3390/ijms22115423.

Nadeem, M.A., Nawaz, M.A., Shahid, M.Q., Dogan, Y., Comertpay, G., Yıldız, M., Hatipoglu, R., Ahmad, F., Alsaleh, A. and Labhane, N. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnological Equipment 32: 261 – 285. https://doi.org//10.1080/13102818.2017.1400401.

Nawaz, M.A. and Chung, G. (2020). Genetic improvement of cereals and grain legumes. Genes (Basel), 11, 1255. https://doi.org//10.3390/genes11111255.

Okada, Y., Monden, Y., Nokihara, K., Shirasawa, K., Isobe, S. and Tahara, M. (2019). Genome-wide association studies (GWAS) for yield and weevil resistance in sweet potato (Ipomoea batatas (L.) Lam). Plant Cell Repository, 38, 1383 – 1392. https://doi.org//10.1007/s00299-019-02445-7.

Palumbo, F., Galvao, A.C., Nicoletto, C., Sambo, P. and Barcaccia, G. (2019). Diversity analysis of sweet potato genetic resources using morphological and qualitative traits and molecular markers. Genes (Basel), 10: 840. https://doi.org//10.3390/genes10110840.

Regessa, M.D., Jiru, N.C., Here, A. and Mulugeta, N. (2023). Correlation and Mean Performance Evaluation of Sweet Potato (Ipomoea batatas (L.) Lam.) Genotypes Middle Awash Areas, Ethiopia. Advanced Crop Science Technology, 11: 562.

Som, K., Vernon, G., Isaac, A., Eric, Y.D., Jeremy, T.O., Tignegre, J.B., Belem, J. and Tarpaga, M.V. (2014). Diversity analysis of sweet potato (Ipomoea batatas [L.] Lam) germplasm from Burkina Faso using morphological and simple sequence repeats markers. African Journal of Biotechnology, 13:729–742. https://doi.org//10.5897/ajb2013.13234.

Su, W., Wang, L., Lei, J., Chai, S., Liu, Y., Yang, Y., Yang, X. and Jiao, C. (2017). Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. PLoS One, 12: e0172066 – e0172114. https://doi.org//10.1371/journal.pone.0172066.

Suematsu, K., Tanaka, M. and Isobe, S. (2021). Identification of a major QTL for root thickness in diploid wild sweet potato (Ipomoea trifida) using QTL-seq. Plant Production Science, 25: 120 – 129. https://doi.org//10.1080/1343943x.2021.1927766.

Wadl, P.A., Olukolu, B.A., Branham, S.E., Jarret, R.L., Yencho, G.C. and Jackson, D.M. (2018). Genetic diversity and population structure of the USDA sweet potato (Ipomoea batatas) germplasm collections using GBSpoly. Frontier of Plant Science, 9, 1166. https://doi.org//10.3389/fpls.2018.01166.

Wu, S., Lau, K.H., Cao, Q., Hamilton, J.P., Sun, H., Zhou, C., Eserman, L., Gemenet, D.C., Olukolu, B.A. and Wang, H. (2018). Genome sequences of two diploid wild relatives of cultivated sweet potato reveal targets for genetic improvement. Natural Communication, 9, 4580 – 4612. https://doi.org//10.1038/s41467-018-06983-8.

Yada, B., Brown-Guedira, G., Alajo, A., Ssemakula, G.N., Owusu-Mensah, E., Carey, E.E., Mwanga, R.O.M. and Yencho, G.C. (2017). Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and b-carotene content in sweet potato. Breeding Science, 67, 140 – 150. https://doi.org//10.1270/jsbbs.16089.

Yan, M., Nie, H., Wang, Y., Wang, X., Jarret, R., Zhao, J., Wang, H. and Yang, J. (2022). Exploring and exploiting genetics and genomics for sweet potato improvement: Status and perspectives. Plant Communication, 3, 100332. https://doi.org//10.1016/j.xplc.2022.100332

Yan, M., Li, M., Moeinzadeh, M-H., Quispe-Huamanquispe, D.G., Fan, W., Nie, H., Wang, Z., Heider, B., Jarret, R. and Kreuze, J. (2021). Haplotype-based phylogenetic analysis uncovers the tetraploid progenitor of sweet potato. Reserve Sequences. https://doi.org//10.21203/rs.3.rs-750500/v1.

Yang, X.S., Su, W.J., Wang, L.J., Jian, L., Chai, S.S. and Liu, Q.C. (2015). Molecular diversity and genetic structure of 380 sweet potato accessions as revealed by SSR markers. Journal of Integrated Agriculture, 14, 633–641. https://doi.org//10.1016/s2095-3119(14)60794-2.

Zawedde, B.M., Ghislain, M., Magembe, E., Amaro, G.B., Grumet, R. and Hancock, J. (2015). Characterization of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers. Genetic Resources and Crop Evolution, 62, 501 – 513. https://doi.org//10.1007/s10722-014-0175-5

Downloads

Published

2024-05-29

How to Cite

Alfred, J. U., & Paul, A. M. (2024). Agronomic and Molecular Characterization of Sweet Potato (Ipomoea batatas [L.] Lam) Varieties in Nigeria. UMYU Scientifica, 3(2), 1–15. https://doi.org/10.56919/usci.2432.001