Truncated Exponential Log-Topp-Leone Rayleigh Distributions: Properties with Application to Bladder Cancer Data
DOI:
https://doi.org/10.56919/usci.2433.020Keywords:
Truncated exponential, Log top-leone G family, Rayleigh Distribution, Properties, Estimation, ApplicationAbstract
Study’s Excerpt/Novelty
- This study presents a truncated exponential log-topp-leone Rayleigh distribution by expanding the truncated exponential log-topp-leone family of distributions.
- The study comprehensively analyses the distribution's properties and parameter estimation methods, with practical applications demonstrated using right-skewed bladder cancer data.
- The new model's superior performance over standard models, evidenced by lower AIC, CAIC, and BIC values, demonstrated its potential in accurately modeling right-skewed data.
Full Abstract
In this article, we introduce a new truncated exponential log-topp-leone Rayleigh distribution on the basis of the truncated exponential log-topp-leone family of distributions. We discussed some properties, including survival function, hazard function, entropy, moment, moment generating function, quantile, and order statistics. We also estimate the parameters of the distribution using maximum likelihood, least squares, and Cramer von-mises. We demonstrated how suitable the proposed distribution is for modeling right-skewed data, as shown from the pdf plot in Figure 1. Finally, we apply the right-skewed (see Figure 3) bladder cancer data sets and compare the performance of the new model using information criteria (see Table 3), and we conclude that the new model outperforms the other standard models with smaller values of AIC, CAIC, and BIC.
References
Abubakar, U., Osi, A. A., Shuaibu, A., Abubakar, A., Salisu, I. A., and Muhammad, Y. I. (2024). Truncated exponential log-topp-leone generalized family of distributions: properties and application to real data sets. International Journal of Research and technopreneurial innovation, 1(1):147–162.
Aidi, K., Seddik-Ameur, N., Ahmed, A., & Khaleel, M. A. (2022). The Topp-Leone Extended Exponential Distribution: Statistical properties, different estimation methods and applications to life time data. Pakistan Journal of Statistics and Operation Research, 817-836. https://doi.org/10.18187/pjsor.v18i4.3699
Afify, A. Z., Al-Mofleh, H., & Dey, S. (2021). Topp–Leone odd log-logistic exponential distribution: Its improved estimators and applications. Anais da Academia Brasileira de Ciˆencias, 93, e20190586. https://doi.org/10.1590/0001-3765202120190586
Akahira, M. (2017). Statistical estimation for truncated exponential families.
Springer. https://doi.org/10.1007/978-981-10-5296-5
Al-Noor, N. H., & Hilal, O. A. (2021, May). Truncated exponential Topp Leone exponential distribution: properties and applications. In Journal of Physics: Conference Series (Vol. 1879, No. 3, p. 032039). IOP Publishing. https://doi.org/10.1088/1742-6596/1879/3/032039
Al-Shomrani, A., Arif, O., Shawky, A., Hanif, S., & Shahbaz, M. Q. (2016). Topp–Leone Family of Distributions: Some Properties and Application. Pakistan Journal of Statistics and Operation Research, 443-451. https://doi.org/10.18187/pjsor.v12i3.1458
Alyami, S. A., Elbatal, I., Alotaibi, N., Almetwally, E. M., Okasha, H. M., & Elgarhy, M. (2022). Topp–Leone modified Weibull model: Theory and applications to medical and engineering data. Applied Sciences, 12(20), 10431. https://doi.org/10.3390/app122010431
Alzaatreh, A., Famoye, F., & Lee, C. (2013). Weibull-Pareto distribution and its applications. Communications in Statistics-Theory and Methods, 42(9), 1673-1691. https://doi.org/10.1080/03610926.2011.599002
Aryal, G. R., Ortega, E. M., Hamedani, G., and Yousof, H. M. (2017). The topp-leone generated weibull distribution: regression model, characterizations and applications. International Journal of Statistics and Probability, 6(1):126–141. https://doi.org/10.5539/IJSP.V6N1P1266
Behairy, S., Refaey, R., EL-Helbawy, A., & AL-Dayian, G. (2020). Topp Leone-inverted Kumaraswamy distribution: Properties, estimation and prediction. J. Appl. Probab. Stat, 15, 93-118.
Boos, D. D. (1982). Minimum anderson-darling estimation. Communications in
Statistics-Theory and Methods, 11(24):2747–2774. https://doi.org/10.1080/03610928208828420
Cordeiro, G. M., Ortega, E. M., & Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347(8), 1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010
Cordeiro, G. M., Saboor, A., Khan, M. N., Gamze, O. Z. E. L., & Pascoa, M. A. (2016). The Kumaraswamy exponential-Weibull distribution: theory and applications. Hacettepe journal of mathematics and statistics, 45(4), 1203-1229. https://doi.org/ 10.15672/HJMS.20157612083
Flaih, A., Elsalloukh, H., Mendi, E., & Milanova, M. (2012). The exponentiated inverted Weibull distribution. Appl. Math. Inf. Sci, 6(2), 167-171.
Hassan, A. S., Almetwally, E. M., & Ibrahim, G. M. (2021). Kumaraswamy Inverted Topp-Leone Distribution with Applications to COVID-19 Data. Computers, Materials & Continua, 68(1). http://dx.doi.org/10.32604/cmc.2021.013971
Lemonte, A. J., Cordeiro, G. M., & Ortega, E. M. (2014). On the additive Weibull distribution. Communications in Statistics-Theory and Methods, 43(10-12), 2066-2080. https://doi.org/10.1080/03610926.2013.766343
Nadarajah, S. (2005). Exponentiated pareto distributions. Statistics, 39(3), 255-260. https://doi.org/10.1080/02331880500065488
Nadarajah, S. and Kotz, S. (2003). Moments of some j-shaped distributions. Jour-
nal of Applied Statistics, 30(3):311–317. https://doi.org/10.1080/0266476022000030084
Rady, E. H. A., Hassanein, W. A., & Elhaddad, T. A. (2016). The power Lomax distribution with an application to bladder cancer data. SpringerPlus, 5, 1-22. https://doi.org/10.1186/s40064-016-3464-y
Rayleigh, J. (1980). On the resultant of a large number of vibrations of the same pitch and of arbitrary phase, Philos. Mag.;10,73-78.
Swain, J. J., Venkatraman, S., and Wilson, J. R. (1988). Least-squares estimation
of distribution functions in johnson’s translation system. Journal of Sta-
tistical Computation and Simulation, 29(4):271–297. https://doi.org/10.1080/00949658808811068
Tahir, M. H., Cordeiro, G. M., Alzaatreh, A., Mansoor, M., & Zubair, M. (2016). A new Weibull–Pareto distribution: properties and applications. Communications in Statistics-Simulation and Computation, 45(10), 3548-3567. https://doi.org/10.1080/03610918.2014.948190
Topp, C. W., & Leone, F. C. (1955). A Family of J-Shaped Frequency Functions. Journal of the American Statistical Association, 50(269), 209–219. https://doi.org/10.1080/01621459.1955.10501259
Usman, A., Ishaq, A. I., Suleiman, A. A., Othman, M., Daud, H., and Aliyu, Y.
(2023). Univariate and bivariate log-topp-leone distribution using cen-
sored and uncensored datasets. In Computer Sciences & Mathematics Fo-
rum, volume 7, page 32. MDPI. https://doi.org/10.3390/IOCMA2023-14421
Yahaya, A. and Abba, B. (2017). Odd generalized exponential inverse-exponential distribution with its properties and application. Journal of the Nigerian Association of Mathematical Physics, 41:297–304
Zea, L. M., Silva, R. B., Bourguignon, M., Santos, A. M., Cordeiro, G. M. (2012). The beta exponentiated Pareto distribution with application to bladder cancer susceptibility. International Journal of Statistics and Probability 1:8–19. http://dx.doi.org/10.5539/ijsp.v1n2p88
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Usman Abubakar, Abdulhameed Ado Osi, Ahmed Shuaibu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.