Review of Magnetic Nanoparticles: From Synthesis and Design to Applications
DOI:
https://doi.org/10.56919/usci.2434.007Keywords:
nanoparticles, synthesis methods, biomedicine, magnetic nanoparticles, disease detectionAbstract
Study’s Excerpt/Novelty
- This review offers a comprehensive overview of the synthesis, characterization, and biomedical applications of magnetic nanoparticles, emphasizing their underexplored potential compared to noble metals like gold.
- It highlights the current limitations in nanoparticle classification techniques and the need for improved methodologies.
- The study recommend for the development of standard protocols and the exploration of new therapeutic applications, contributing to the advancement of magnetic nanoparticle research in biomedicine.
Full Abstract
It is believed that among others, magnetic nanoparticles possess the ability for stability, biocompatibility, and cost-effectiveness in biomedicine. Despite many types of magnetic materials, including non-noble metals like iron, cobalt, and nickel, the potential applications seem not to have been as explored as with noble metals like gold. This review aimed to give a broad overview of magnetic nanoparticles, more so their synthesis, characterization, and various applications in disease detection, such as cancer diagnostics. This was a literature review design; the data were sourced from peer-reviewed articles published within the last ten years. The criteria for selecting studies included that they had to directly address magnetic nanoparticle synthesis, design, and application. For this purpose, databases such as PubMed, Scopus, and Google scholar were tapped into to ensure the widest possible relevant coverage. Different approaches, such as chemical or mechanical ones, are used to create magnetic nanoparticles. The paper outlines the advantages of magnetic nanoparticles in the treatment of diseases. Furthermore, as most of the categorization techniques now in use are found to be inaccurate and unreliable, they have now shown certain flaws. Therefore, the use of magnetic nanoparticles in biomedical applications, especially in diagnosing and treating diseases, holds great promise. However, improvement in the methodology for the classification of nanoparticles is quite necessary. Such standard protocols for synthesizing and characterizing magnetic nanoparticles should be developed in the near future, with new therapeutic applications being explored in this domain.
References
Abelmann, L. (2017). Magnetic Force Microscopy. In Encyclopedia of Spectroscopy and Spectrometry (pp. 675–684). Elsevier. https://doi.org/10.1016/B978-0-12-803224-4.00029-7
Aublant, J. (2017). Standardization of Nanomaterials: Methods and Protocols. In E. Mansfield, D. L. Kaiser, D. Fujita, & M. Van De Voorde (Eds.), Metrology and Standardization of Nanotechnology (1st ed., pp. 289–298). Wiley. https://doi.org/10.1002/9783527800308.ch17
Baba, N., Hata, S., Saito, H., & Kaneko, K. (2023). Three-dimensional electron tomography and recent expansion of its applications in materials science. Microscopy, 72(2), 111–134. https://doi.org/10.1093/jmicro/dfac071
Bahadur, A., Saeed, A., Shoaib, M., Iqbal, S., Bashir, M. I., Waqas, M., Hussain, M. N., & Abbas, N. (2017). Eco-friendly synthesis of magnetite (Fe 3 O 4 ) nanoparticles with tunable size: Dielectric, magnetic, thermal and optical studies. Materials Chemistry and Physics, 198, 229–235. https://doi.org/10.1016/j.matchemphys.2017.05.061
Bossmann, S. H., & Wang, H. (Eds.). (2017). Magnetic nanomaterials: Applications in catalysis and life sciences. Royal Society of Chemistry.
Brice-Profeta, S., Arrio, M.-A., Tronc, E., Menguy, N., Letard, I., Cartier Dit Moulin, C., Noguès, M., Chanéac, C., Jolivet, J.-P., & Sainctavit, Ph. (2005). Magnetic order in - nanoparticles: A XMCD study. Journal of Magnetism and Magnetic Materials, 288, 354–365. https://doi.org/10.1016/j.jmmm.2004.09.120
Brinker, C.J. and Scherer, G.W. (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego.
Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109(8), 083921. https://doi.org/10.1063/1.3551582
Chaudhary, V., & Ramanujan, R. V. (2016). Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling. Scientific Reports, 6(1), 35156. https://doi.org/10.1038/srep35156
Chaudhary, V., Chen, X., & Ramanujan, R. V. (2019). Iron and manganese based magnetocaloric materials for near room temperature thermal management. Progress in Materials Science, 100, 64–98. https://doi.org/10.1016/j.pmatsci.2018.09.005
Chaudhary, V., Wang, Z., Ray, A., Sridhar, I., & Ramanujan, R. V. (2017). Self pumping magnetic cooling. Journal of Physics D: Applied Physics, 50(3), 03LT03. https://doi.org/10.1088/1361-6463/aa4f92
Chen, G., Ni, X., & Nsongo, T. (2004). Lattice parameter dependence on long-range ordered degree during order–disorder transformation. Intermetallics, 12(7–9), 733–739. https://doi.org/10.1016/j.intermet.2004.02.013
Chinnasamy, C. N., Huang, J. Y., Lewis, L. H., Latha, B., Vittoria, C., & Harris, V. G. (2008). Direct chemical synthesis of high coercivity air-stable SmCo nanoblades. Applied Physics Letters, 93(3), 032505. https://doi.org/10.1063/1.2963034
Clarke, G., Rogov, A., McCarthy, S., Bonacina, L., Gun’ko, Y., Galez, C., Le Dantec, R., Volkov, Y., Mugnier, Y., & Prina-Mello, A. (2018). Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHG-efficient BiFeO3 nanoparticles for harmonic bio-imaging. Scientific Reports, 8(1), 10473. https://doi.org/10.1038/s41598-018-28557-w
Clemons, T. D., Kerr, R. H., & Joos, A. (2019). Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. In Comprehensive Nanoscience and Nanotechnology (pp. 193–210). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.10462-X
Colombo, M., Carregal-Romero, S., Casula, M. F., Gutiérrez, L., Morales, M. P., Böhm, I. B., Heverhagen, J. T., Prosperi, D., & Parak, Wolfgang. J. (2012). Biological applications of magnetic nanoparticles. Chemical Society Reviews, 41(11), 4306. https://doi.org/10.1039/c2cs15337h
Comfort, N., Cai, K., Bloomquist, T. R., Strait, M. D., Ferrante Jr., A. W., & Baccarelli, A. A. (2021). Nanoparticle Tracking Analysis for the Quantification and Size Determination of Extracellular Vesicles. Journal of Visualized Experiments, 169, 62447. https://doi.org/10.3791/62447
Condé-Green A, Kotamarti VS, Sherman LS, Keith JD, Lee ES, Granick MS, Rameshwar P. Shift toward Mechanical Isolation of Adipose-derived Stromal Vascular Fraction: Review of Upcoming Techniques. Plast Reconstr Surg Glob Open. 2016 Sep 7;4(9):e1017. https://doi.org/10.1097/GOX.0000000000001017
Conley, S., Knies, A., Batten, J., Ash, G., Miner, B., Hwang, Y., et al. (2019) Agreement between Actigraphic and Polysomnographic Measures of Sleep in Adults with and without Chronic Conditions: A Systematic Review and Meta-Analysis. Sleep Medicine Reviews, 46, 151-160. https://doi.org/10.1016/j.smrv.2019.05.001
Dahl, Ø., Sunding, M. F., Killi, V., Svenum, I.-H., Grandcolas, M., Andreassen, M., Nilsen, O., Thøgersen, A., Jensen, I. J. T., & Chatzitakis, A. (2023). Interrogation of the Interfacial Energetics at a Tantalum Nitride/Electrolyte Heterojunction during Photoelectrochemical Water Splitting by Operando Ambient Pressure X-ray Photoelectron Spectroscopy. ACS Catalysis, 13(17), 11762–11770. https://doi.org/10.1021/acscatal.3c02423
Danino, D. (2012). Cryo-TEM of soft molecular assemblies. Current Opinion in Colloid & Interface Science, 17(6), 316–329. https://doi.org/10.1016/j.cocis.2012.10.003
Dumestre, F., Chaudret, B., Amiens, C., Respaud, M., Fejes, P., Renaud, P., & Zurcher, P. (2003). Unprecedented Crystalline Super‐Lattices of Monodisperse Cobalt Nanorods. Angewandte Chemie International Edition, 42(42), 5213–5216. https://doi.org/10.1002/anie.200352090
Eastlake, A. C., Beaucham, C., Martinez, K. F., Dahm, M. M., Sparks, C., Hodson, L. L., & Geraci, C. L. (2016). Refinement of the Nanoparticle Emission Assessment Technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0). Journal of Occupational and Environmental Hygiene, 13(9), 708–717. https://doi.org/10.1080/15459624.2016.1167278
Elaissari, A., Chatterjee, J., Hamoudeh, M., & Fessi, H. (2009). Advances in the Preparation and Biomedical Applications of Magnetic Colloids. In R. Hidalgo-√Ålvarez (Ed.), Structure and Functional Properties of Colloidal Systems (Vol. 20093872, pp. 315–337). CRC Press. https://doi.org/10.1201/9781420084474-c14
Elliott, D. W., & Zhang, W. (2001). Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environmental Science & Technology, 35(24), 4922–4926. https://doi.org/10.1021/es0108584
Fang, M., Ström, V., Olsson, R. T., Belova, L., & Rao, K. V. (2011). Rapid mixing: A route to synthesize magnetite nanoparticles with high moment. Applied Physics Letters, 99(22), 222501. https://doi.org/10.1063/1.3662965
Ghosh S, et al. (2021) Microbial Nano-Factories: Synthesis and Biomedical Applications. Front Chem 9:626834. https://doi.org/10.3389/fchem.2021.626834
Gilchrist, R. K., Medal, R., Shorey, W. D., Hanselman, R. C., Parrott, J. C., & Taylor, C. B. (1957). Selective Inductive Heating of Lymph Nodes: Annals of Surgery, 146(4), 596–606. https://doi.org/10.1097/00000658-195710000-00007
Gioria, S., Caputo, F., Urbán, P., Maguire, C. M., Bremer-Hoffmann, S., Prina-Mello, A., Calzolai, L., & Mehn, D. (2018). Are existing standard methods suitable for the evaluation of nanomedicines: Some case studies. Nanomedicine, 13(5), 539–554. https://doi.org/10.2217/nnm-2017-0338
Gleich, B., & Weizenecker, J. (2005). Tomographic imaging using the nonlinear response of magnetic particles. Nature, 435(7046), 1214–1217. https://doi.org/10.1038/nature03808
González, V., Kharisov, B., & Gómez, I. (2019). Preparation, optical characterization and stability of gold nanoparticles by facile methods. Revista Mexicana de Física, 65(6 Nov-Dec), 690–698. https://doi.org/10.31349/RevMexFis.65.690
Grass, R. N., & Stark, W. J. (2006). Gas phase synthesis of fcc-cobalt nanoparticles. Journal of Materials Chemistry, 16(19), 1825. https://doi.org/10.1039/b601013j
Grass, R. N., Athanassiou, E. K., & Stark, W. J. (2007). Covalently Functionalized Cobalt Nanoparticles as a Platform for Magnetic Separations in Organic Synthesis. Angewandte Chemie International Edition, 46(26), 4909–4912. https://doi.org/10.1002/anie.200700613
Guerrero, G., Mutin, P. H., & Vioux, A. (2001). Anchoring of Phosphonate and Phosphinate Coupling Molecules on Titania Particles. Chemistry of Materials, 13(11), 4367–4373. https://doi.org/10.1021/cm001253u
Gupta, M., Naqvi, N., Kumar, P. (2017). i AMF – Centralized database of arbuscular mycorrhizal distribution, phylogeny and taxonomy. Journal of Recent Advances in Applied Sciences, 30 (1). 1 - 5 < http://www.jraas.org/ >
Hamley, I. W. (2021). Small-angle scattering: Theory, instrumentation, data and applications (First edition). Wiley.
Hamoudi, H., & Esaulov, V. A. (2016). Selfassembly of α,ω‐dithiols on surfaces and metal dithiol heterostructures. Annalen Der Physik, 528(3–4), 242–263. https://doi.org/10.1002/andp.201500280
Hassellöv, M., Readman, J. W., Ranville, J. F., & Tiede, K. (2008). Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology, 17(5), 344–361. https://doi.org/10.1007/s10646-008-0225-x
Heydari, M., Javidi, M., Attar, M. M., Karimi, A., Navidbakhsh, M., Haghpanahi, M., & Amanpour, S. (2015). MAGNETIC FLUID HYPERTHERMIA IN A CYLINDRICAL GEL CONTAINS WATER FLOW. Journal of Mechanics in Medicine and Biology, 15(05), 1550088. https://doi.org/10.1142/S0219519415500888
Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692. https://doi.org/10.2217/nnm.16.5
Hou, Y., Sun, S., Rong, C., & Liu, J. P. (2007). Sm Co 5 ∕ Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Applied Physics Letters, 91(15), 153117. https://doi.org/10.1063/1.2799170
Hou, Y., Xu, Z., Peng, S., Rong, C., Liu, J. P., & Sun, S. (2007). A Facile Synthesis of SmCo 5 Magnets from Core/Shell Co/Sm 2 O 3 Nanoparticles. Advanced Materials, 19(20), 3349–3352. https://doi.org/10.1002/adma.200700891
Hyeon, T. (2003). Chemical synthesis of magnetic nanoparticles. Chemical Communications, 8, 927–934. https://doi.org/10.1039/b207789b
Iglesias‐Juez, A., Chiarello, G. L., Patience, G. S., & Guerrero‐Pérez, M. O. (2022). Experimental methods in chemical engineering: X ‐ray absorption spectroscopy— XAS , XANES , EXAFS. The Canadian Journal of Chemical Engineering, 100(1), 3–22. https://doi.org/10.1002/cjce.24291
Iliasov, A. R., Nizamov, T. R., Naumenko, V. A., Garanina, A. S., Vodopyanov, S. S., Nikitin, A. A., Pershina, A. G., Chernysheva, A. A., Kan, Y., Mogilnikov, P. S., Metelkina, O. N., Schetinin, I. V., Savchenko, A. G., Majouga, A. G., & Abakumov, M. A. (2021). Non-magnetic shell coating of magnetic nanoparticles as key factor of toxicity for cancer cells in a low frequency alternating magnetic field. Colloids and Surfaces B: Biointerfaces, 206, 111931. https://doi.org/10.1016/j.colsurfb.2021.111931
Inkson, B. J. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods (pp. 17–43). Elsevier. https://doi.org/10.1016/B978-0-08-100040-3.00002-X
Janko, C., Ratschker, T., Nguyen, K., Zschiesche, L., Tietze, R., Lyer, S., & Alexiou, C. (2019). Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy. Frontiers in Oncology, 9, 59. https://doi.org/10.3389/fonc.2019.00059
Javidi, M., Heydari, M., Attar, M. M., Haghpanahi, M., Karimi, A., Navidbakhsh, M., & Amanpour, S. (2015). Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia. International Journal of Hyperthermia, 31(1), 33–39. https://doi.org/10.3109/02656736.2014.988661
Johnson, S. H., Johnson, C. L., May, S. J., Hirsch, S., Cole, M. W., & Spanier, J. E. (2010). Co@CoO@Au core-multi-shell nanocrystals. J. Mater. Chem., 20(3), 439–443. https://doi.org/10.1039/B919610B
Joseph, T., Kar Mahapatra, D., Esmaeili, A., Piszczyk, Ł., Hasanin, M., Kattali, M., Haponiuk, J., & Thomas, S. (2023). Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials, 13(3), 574. https://doi.org/10.3390/nano13030574
Kaiser, D. L., & Chalfin, K. (2017). Standards from ASTM International Technical Committee E 56 on Nanotechnology. In E. Mansfield, D. L. Kaiser, D. Fujita, & M. Van De Voorde (Eds.), Metrology and Standardization of Nanotechnology (1st ed., pp. 269–278). Wiley. https://doi.org/10.1002/9783527800308.ch15
Kavre, I., Kostevc, G., Kralj, S., Vilfan, A., & Babič, D. (2014). Fabrication of magneto-responsive microgears based on magnetic nanoparticle embedded PDMS. RSC Adv., 4(72), 38316–38322. https://doi.org/10.1039/C4RA05602G
Kim, D., Park, J., An, K., Yang, N.-K., Park, J.-G., & Hyeon, T. (2007). Synthesis of Hollow Iron Nanoframes. Journal of the American Chemical Society, 129(18), 5812–5813. https://doi.org/10.1021/ja070667m
Kim, J., Kang, S., Cheng, F., Wang, Y., Ye, X., & Park, J. (2024). Recent advances in liquid phase transmission electron microscopy of nanoparticle growth and self-assembly. MRS Bulletin, 49(4), 365–376. https://doi.org/10.1557/s43577-024-00702-z
Klaessig, F., Marrapese, M., & Abe, S. (2011). Current Perspectives in Nanotechnology Terminology and Nomenclature. In V. Murashov & J. Howard (Eds.), Nanotechnology Standards (pp. 21–52). Springer New York. https://doi.org/10.1007/978-1-4419-7853-0_2
Kolosnjaj-Tabi, J., Lartigue, L., Javed, Y., Luciani, N., Pellegrino, T., Wilhelm, C., Alloyeau, D., & Gazeau, F. (2016). Biotransformations of magnetic nanoparticles in the body. Nano Today, 11(3), 280–284. https://doi.org/10.1016/j.nantod.2015.10.001
Kralj, S., Makovec, D., Čampelj, S., & Drofenik, M. (2010). Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. Journal of Magnetism and Magnetic Materials, 322(13), 1847–1853. https://doi.org/10.1016/j.jmmm.2009.12.038
Kralj, S., Rojnik, M., Romih, R., Jagodič, M., Kos, J., & Makovec, D. (2012). Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. Journal of Nanoparticle Research, 14(10), 1151. https://doi.org/10.1007/s11051-012-1151-7
Kuzmann, E., Homonnay, Z., Klencsár, Z., & Szalay, R. (2021). 57Fe Mössbauer Spectroscopy as a Tool for Study of Spin States and Magnetic Interactions in Inorganic Chemistry. Molecules, 26(4), 1062. https://doi.org/10.3390/molecules26041062
Leibowitz, M. (2017). International Electrotechnical Commission: Nanotechnology Standards. In E. Mansfield, D. L. Kaiser, D. Fujita, & M. Van De Voorde (Eds.), Metrology and Standardization of Nanotechnology (1st ed., pp. 279–288). Wiley. https://doi.org/10.1002/9783527800308.ch16
Li, X., Wang, B., Zhou, S., Chen, W., Chen, H., Liang, S., Zheng, L., Yu, H., Chu, R., Wang, M., Chai, Z., & Feng, W. (2020). Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. Journal of Nanobiotechnology, 18(1), 45. https://doi.org/10.1186/s12951-020-00599-1
Lin, P.-C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 32(4), 711–726. https://doi.org/10.1016/j.biotechadv.2013.11.006
Linsinger, T. P. J., Roebben, G., Solans, C., & Ramsch, R. (2011). Reference materials for measuring the size of nanoparticles. TrAC Trends in Analytical Chemistry, 30(1), 18–27. https://doi.org/10.1016/j.trac.2010.09.005
Liu, H., M. Fu, X. Jin, Y. Shang, D. Shindell, G. Faluvegi, C. Shindell, and K. He, 2016: Health and climate impacts of ocean-going vessels in East Asia. Nat. Clim. Change, 6, no. 11, 1037-1041. https://doi.org/10.1038/nclimate3083
Lu, A., Salabas, E. L., & Schüth, F. (2007). Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 46(8), 1222–1244. https://doi.org/10.1002/anie.200602866
Lu, A., Schmidt, W., Matoussevitch, N., Bönnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W., & Schüth, F. (2004). Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angewandte Chemie International Edition, 43(33), 4303–4306. https://doi.org/10.1002/anie.200454222
Lu, S., Antonov, S., Li, L., Liu, C., Zhang, X., Zheng, Y., Fraser, H. L., & Feng, Q. (2020). Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress. Acta Materialia, 190, 16–28. https://doi.org/10.1016/j.actamat.2020.03.015
Mahendran, V., & Philip, J. (2012). Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials. Applied Physics Letters, 100(7), 073104. https://doi.org/10.1063/1.3684969
Maitra, A., Bates, S., Kolvekar, T., Devarajan, P. V., Guzman, J. D., & Bhakta, S. (2015). Repurposing—A ray of hope in tackling extensively drug resistance in tuberculosis. International Journal of Infectious Diseases, 32, 50–55. https://doi.org/10.1016/j.ijid.2014.12.031
Maldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications. In S. H. Petrosko & E. S. Day (Eds.), Biomedical Nanotechnology (Vol. 1570, pp. 47–71). Springer New York. https://doi.org/10.1007/978-1-4939-6840-4_4
Malhotra, N., Lee, J.-S., Liman, R. A. D., Ruallo, J. M. S., Villaflores, O. B., Ger, T.-R., & Hsiao, C.-D. (2020). Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules, 25(14), 3159. https://doi.org/10.3390/molecules25143159
Mansfield, E., Hartshorn, R., & Atkinson, A. (2017). Nanomaterial Recommendations from the International Union of Pure and Applied Chemistry. In E. Mansfield, D. L. Kaiser, D. Fujita, & M. Van De Voorde (Eds.), Metrology and Standardization of Nanotechnology (1st ed., pp. 299–306). Wiley. https://doi.org/10.1002/9783527800308.ch18
Mehta, A. P., & Pardeshi, C. V. (2023). Multifunctional Magnetic Nanoparticles: An Effective Theranostic Carrier System. In C. V. Pardeshi (Ed.), Nanomaterial-Based Drug Delivery Systems (pp. 175–207). Springer International Publishing. https://doi.org/10.1007/978-3-031-30529-0_6
Meng, X., Seton, H. C., Lu, L. T., Prior, I. A., Thanh, N. T. K., & Song, B. (2011). Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale, 3(3), 977. https://doi.org/10.1039/c0nr00846j
Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1–14. https://doi.org/10.1016/j.partic.2016.06.001
Monteserín, M., Larumbe, S., Martínez, A. V., Burgui, S., & Francisco Martín, L. (2021). Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. Journal of Nanoscience and Nanotechnology, 21(5), 2705–2741. https://doi.org/10.1166/jnn.2021.19062
Mornet, S., Vasseur, S., Grasset, F., Veverka, P., Goglio, G., Demourgues, A., Portier, J., Pollert, E., & Duguet, E. (2006). Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry, 34(2–4), 237–247. https://doi.org/10.1016/j.progsolidstchem.2005.11.010
Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871–12934. https://doi.org/10.1039/C8NR02278J
Murray, C. B., Sun, S., Doyle, H., & Betley, T. (2001). Monodisperse 3 d Transition-Metal (Co,Ni,Fe) Nanoparticles and Their Assembly intoNanoparticle Superlattices. MRS Bulletin, 26(12), 985–991. https://doi.org/10.1557/mrs2001.254
Mylkie, K., Nowak, P., Rybczynski, P., & Ziegler-Borowska, M. (2021). Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. Materials, 14(2), 248. https://doi.org/10.3390/ma14020248
Nam, K. M., Shim, J. H., Ki, H., Choi, S., Lee, G., Jang, J. K., Jo, Y., Jung, M., Song, H., & Park, J. T. (2008). Single‐Crystalline Hollow Face‐Centered‐Cubic Cobalt Nanoparticles from Solid Face‐Centered‐Cubic Cobalt Oxide Nanoparticles. Angewandte Chemie International Edition, 47(49), 9504–9508. https://doi.org/10.1002/anie.200803048
Nurettin Sezer, İbrahim Arı, Yusuf Biçer, Muammer Koç, Superparamagnetic nanoarchitectures: Multimodal functionalities and applications, Journal of Magnetism and Magnetic Materials, Volume 538,2021,168300,ISSN 0304-8853. https://doi.org/10.1016/j.jmmm.2021.168300
Occupational exposure sampling for engineered nanomaterials. (2022). U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. https://doi.org/10.26616/NIOSHPUB2022153
Panahi, F., Bahrami, F., & Khalafi-Nezhad, A. (2017). Magnetic nanoparticles grafted l-carnosine dipeptide: Remarkable catalytic activity in water at room temperature. Journal of the Iranian Chemical Society, 14(10), 2211–2220. https://doi.org/10.1007/s13738-017-1157-2
Parekh, K., Nair, J., & Bhardwaj, A. (2020). Biosynthesis of magnetite nanoparticles: An eco-friendly and scalable approach. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11(3), 035014. https://doi.org/10.1088/2043-6254/aba896
Philip, J., Mahendran, V., & Felicia, L. J. (2013). A Simple, In-Expensive and Ultrasensitive Magnetic Nanofluid Based Sensor for Detection of Cations, Ethanol and Ammonia. Journal of Nanofluids, 2(2), 112–119. https://doi.org/10.1166/jon.2013.1050
Philip, J., Shima, P. D., & Raj, B. (2008). Nanofluid with tunable thermal properties. Applied Physics Letters, 92(4), 043108. https://doi.org/10.1063/1.2838304
Powers, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., & Roberts, S. M. (2006). Research Strategies for Safety Evaluation of Nanomaterials. Part VI. Characterization of Nanoscale Particles for Toxicological Evaluation. Toxicological Sciences, 90(2), 296–303. https://doi.org/10.1093/toxsci/kfj099
Powers, K. W., Palazuelos, M., Moudgil, B. M., & Roberts, S. M. (2007). Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology, 1(1), 42–51. https://doi.org/10.1080/17435390701314902
Ramaswamy, B., Kulkarni, S. D., Villar, P. S., Smith, R. S., Eberly, C., Araneda, R. C., Depireux, D. A., & Shapiro, B. (2015). Movement of magnetic nanoparticles in brain tissue: Mechanisms and impact on normal neuronal function. Nanomedicine: Nanotechnology, Biology and Medicine, 11(7), 1821–1829. https://doi.org/10.1016/j.nano.2015.06.003
Reeves, D. B. (2017). Nonlinear Nonequilibrium Simulations of Magnetic Nanoparticles. In C. S. S. R. Kumar (Ed.), Magnetic Characterization Techniques for Nanomaterials (pp. 121–156). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-52780-1_4
Reeves, D. B., & Weaver, J. B. (2012). Simulations of magnetic nanoparticle Brownian motion. Journal of Applied Physics, 112(12), 124311. https://doi.org/10.1063/1.4770322
Reeves, D. B., & Weaver, J. B. (2014). Approaches for Modeling Magnetic Nanoparticle Dynamics. Critical Reviews in Biomedical Engineering, 42(1), 85–93. https://doi.org/10.1615/CritRevBiomedEng.2014010845
Rivera-Rodriguez, A., & Rinaldi-Ramos, C. M. (2021). Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annual Review of Chemical and Biomolecular Engineering, 12(1), 163–185. https://doi.org/10.1146/annurev-chembioeng-102720-015630
Ross Hallett, F. (1999). Scattering and Particle Sizing Applications*. In Encyclopedia of Spectroscopy and Spectrometry (pp. 2488–2494). Elsevier. https://doi.org/10.1016/B978-0-12-374413-5.00277-3
Rusly, S. N. A., Jamal, S. H., Samsuri, A., Mohd Noor, S. A., & Abdul Rahim, K. S. (2024). Stabilizer selection and formulation strategies for enhanced stability of single base nitrocellulose propellants: A review. Energetic Materials Frontiers, 5(1), 52–69. https://doi.org/10.1016/j.enmf.2024.02.007
Russo, R., Esposito, E., Granata, C., Vettoliere, A., Russo, M., Cannas, C., Peddis, D., & Fiorani, D. (2012). Magnetic Nanoparticle Characterization Using Nano-SQUID based on Niobium Dayem Bridges. Physics Procedia, 36, 293–299. https://doi.org/10.1016/j.phpro.2012.06.162
Sattler MA, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, Lengeler C. 2005. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malaria J 4: 4. https://doi.org/10.1186/1475-2875-4-4
Schaffer, B., Grogger, W., Kothleitner, G., & Hofer, F. (2010). Comparison of EFTEM and STEM EELS plasmon imaging of gold nanoparticles in a monochromated TEM. Ultramicroscopy, 110(8), 1087–1093. https://doi.org/10.1016/j.ultramic.2009.12.012
Schätz, A., Grass, R. N., Kainz, Q., Stark, W. J., & Reiser, O. (2010). Cu(II)−Azabis(oxazoline) Complexes Immobilized on Magnetic Co/C Nanoparticles: Kinetic Resolution of 1,2-Diphenylethane-1,2-diol under Batch and Continuous-Flow Conditions. Chemistry of Materials, 22(2), 305–310. https://doi.org/10.1021/cm9019099
Schätz, A., Grass, R. N., Stark, W. J., & Reiser, O. (2008). TEMPO Supported on Magnetic C/Co‐Nanoparticles: A Highly Active and Recyclable Organocatalyst. Chemistry – A European Journal, 14(27), 8262–8266. https://doi.org/10.1002/chem.200801001
Schätz, A., Reiser, O., & Stark, W. J. (2010). Nanoparticles as Semi‐Heterogeneous Catalyst Supports. Chemistry – A European Journal, 16(30), 8950–8967. https://doi.org/10.1002/chem.200903462
Schneider-Futschik, E. K., & Reyes-Ortega, F. (2021). Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics, 13(8), 1157. https://doi.org/10.3390/pharmaceutics13081157
Seo, W. S., Lee, J. H., Sun, X., Suzuki, Y., Mann, D., Liu, Z., Terashima, M., Yang, P. C., McConnell, M. V., Nishimura, D. G., & Dai, H. (2006). FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nature Materials, 5(12), 971–976. https://doi.org/10.1038/nmat1775
Shankar, S.S., et al. (2004) Rapid Synthesis of Au, Ag, and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. Journal of Colloid and Interface Science, 275, 496-502. https://doi.org/10.1016/j.jcis.2004.03.003
Sharifi, I., Shokrollahi, H., & Amiri, S. (2012). Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 324(6), 903–915. https://doi.org/10.1016/j.jmmm.2011.10.017
Stavis, S. M., Fagan, J. A., Stopa, M., & Liddle, J. A. (2018). Nanoparticle Manufacturing – Heterogeneity through Processes to Products. ACS Applied Nano Materials, 1(9), 4358–4385. https://doi.org/10.1021/acsanm.8b01239
Stiufiuc, G. F., & Stiufiuc, R. I. (2024). Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field. Applied Sciences, 14(4), 1623. https://doi.org/10.3390/app14041623
Suji Choi, Sang Ihn Han, Dokyoon Kim, Taeghwan Hyeon, Dae-Hyeong Kim (2019) High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Royal Society of Chemistry. https://doi.org/10.1039/C8CS00706C
Tadic, M., Kralj, S., Jagodic, M., Hanzel, D., & Makovec, D. (2014). Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Applied Surface Science, 322, 255–264. https://doi.org/10.1016/j.apsusc.2014.09.181
Talian, I., Orinák, A., Preisler, J., Heile, A., Onofrejová, L., Kaniansky, D., & Arlinghaus, H. F. (2007). Comparative TOF‐SIMS and MALDI TOF‐MS analysis on different chromatographic planar substrates. Journal of Separation Science, 30(16), 2570–2582. https://doi.org/10.1002/jssc.200700120
Tartaj, P., Morales, M. A. D. P., Veintemillas-Verdaguer, S., Gonz lez-Carre O, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), R182–R197. https://doi.org/10.1088/0022-3727/36/13/202
Tebyetekerwa, M., Zhang, J., Xu, Z., Truong, T. N., Yin, Z., Lu, Y., Ramakrishna, S., Macdonald, D., & Nguyen, H. T. (2020). Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano, 14(11), 14579–14604. https://doi.org/10.1021/acsnano.0c08668
Thersleff, T., Budnyk, S., Drangai, L., & Slabon, A. (2020). Dissecting complex nanoparticle heterostructures via multimodal data fusion with aberration-corrected STEM spectroscopy. Ultramicroscopy, 219, 113116. https://doi.org/10.1016/j.ultramic.2020.113116
Tiede, K., Boxall, A. B. A., Tear, S. P., Lewis, J., David, H., & Hassellöv, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives & Contaminants: Part A, 25(7), 795–821. https://doi.org/10.1080/02652030802007553
Tomczak, P., & Puszkarski, H. (2020). Interpretation of ferromagnetic resonance experimental results by cross-validation of solutions of the Smit-Beljers equation. Journal of Magnetism and Magnetic Materials, 507, 166824. https://doi.org/10.1016/j.jmmm.2020.166824
Tsagkaris, A. S., Bechynska, K., Ntakoulas, D. D., Pasias, I. N., Weller, P., Proestos, C., & Hajslova, J. (2023). Investigating the impact of spectral data pre-processing to assess honey botanical origin through Fourier transform infrared spectroscopy (FTIR). Journal of Food Composition and Analysis, 119, 105276. https://doi.org/10.1016/j.jfca.2023.105276
Vaghari, H., Jafarizadeh-Malmiri, H., Mohammadlou, M., Berenjian, A., Anarjan, N., Jafari, N., & Nasiri, S. (2016). Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnology Letters, 38(2), 223–233. https://doi.org/10.1007/s10529-015-1977-z
Van Dijk, T., Bakker, M. S., Holtrop, F., Nieger, M., Slootweg, J. C., & Lammertsma, K. (2015). Base-Stabilized Nitrilium Ions as Convenient Imine Synthons. Organic Letters, 17(6), 1461–1464. https://doi.org/10.1021/acs.orglett.5b00339
Wang J, et al. (2015) Identifying a Rab effector on the macroautophagy pathway. Methods Mol Biol 1298:117-25. https://doi.org/10.1007/978-1-4939-2569-8_10
Wang, C., Hou, Y., Kim, J., & Sun, S. (2007). A General Strategy for Synthesizing FePt Nanowires and Nanorods. Angewandte Chemie International Edition, 46(33), 6333–6335. https://doi.org/10.1002/anie.200702001
Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., & Borgert, J. (2009). Three-dimensional real-time in vivo magnetic particle imaging. Physics in Medicine and Biology, 54(5), L1–L10. https://doi.org/10.1088/0031-9155/54/5/L01
Wong, D. W., Gan, W. L., Teo, Y. K., & Lew, W. S. (2018). Interplay of cell death signaling pathways mediated by alternating magnetic field gradient. Cell Death Discovery, 4(1), 49. https://doi.org/10.1038/s41420-018-0052-7
Wu, B., Majumdar, R. D., Lysak, D. H., Ghosh Biswas, R., Tabatabaei-Anaraki, M., Jenne, A., You, X., Soong, R., Lane, D., Helm, P. A., Codina, A., Decker, V., Simpson, M. J., & Simpson, A. J. (2021). Towards real-time kinetic monitoring of wastewater treatment: A case study of sunlight and ozone treatment of unconcentrated wastewater using flow NMR. Chemical Engineering Journal, 405, 126696. https://doi.org/10.1016/j.cej.2020.126696
Yazdani, S., & Pettes, M. T. (2018). Nanoscale self-assembly of thermoelectric materials: A review of chemistry-based approaches. Nanotechnology, 29(43), 432001. https://doi.org/10.1088/1361-6528/aad673
Yoon, T.-J., Lee, W., Oh, Y.-S., & Lee, J.-K. (2003). Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling Electronic supplementary information (ESI) available: XRD and FT-IR data, as well as the detailed experimental conditions for the catalytic hydroformylation reactions. See http://www.rsc.org/suppdata/nj/b2/b209391j/. New Journal of Chemistry, 27(2), 227–229. https://doi.org/10.1039/b209391j
Zhang, X., Reeves, D. B., Perreard, I. M., Kett, W. C., Griswold, K. E., Gimi, B., & Weaver, J. B. (2013). Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion. Biosensors and Bioelectronics, 50, 441–446. https://doi.org/10.1016/j.bios.2013.06.049
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Precious Chinyere Nnaji, Joshua Nnaemeka Nnaji, Suleiman Zakari, Doris Nnenna Amuji, Olubanke Olujoke Ogunlana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.