Synthesis and Characterisation of Magnesium-Doped Zirconolite-2M Ceramic

Authors

DOI:

https://doi.org/10.56919/usci.2542.009

Keywords:

High level waste, waste management, Nuclear Waste, Magnesium

Abstract

Study’s Excerpt:
• Mg-doped Zirconolite was synthesised and characterised.
• Single-phase Mg-doped Zirconolite was discovered at a lower doping level.
• Impurities were identified within Mg-doped Zirconolite.
• Theoretical computation complements experimental findings.
Full Abstract:
Zirconolite has been considered a promising host matrix for plutonium immobilization because of its enhanced properties. In this work, a range of zirconolite solid solutions with stoichiometric Ca₍₁₋ₓ₎Zr₍₁₊ₓ₎Ti⁴⁺₍₂₋ₓ₎Mg²⁺₍ₓ₎O₇ were carefully explored to investigate magnesium solubility in zirconolite-2M ceramic. Energy-dispersive X-ray spectroscopy, scanning electron microscopy (SEM-EDX), and X-ray diffraction (XRD) were used to characterize the materials. Theoretical formulae, Reactive Spark Plasma Sintering (RSPS), and air sintering were used to determine the samples' elemental compositions. Single-phase zirconolite-2M was discovered in Ca₍₁₋ₓ₎Zr₍₁₊ₓ₎Ti⁴⁺₍₂₋ₓ₎Mg²⁺₍ₓ₎O₇ together with perovskite and zirconia phases in the air-sintered samples. As opposed to this, the RSPS shows a complete fit into the zirconolite-2M of Ca₍₁₋ₓ₎Zr₍₁₊ₓ₎Ti⁴⁺₍₂₋ₓ₎Mg²⁺₍ₓ₎O₇. The elemental composition of the air sintering and RSPS samples is theoretically consistent with the XRD and SEM results, which demonstrated the full incorporation of magnesium on the Ti site of Ca₍₁₋ₓ₎Zr₍₁₊ₓ₎Ti⁴⁺₍₂₋ₓ₎Mg²⁺₍ₓ₎O₇. Therefore, the results indicated the high capability of the zirconolite-2M compound to immobilize divalent cations within the single-phase waste form.

References

Aliyu, Y. (2019). An investigation of magnesium solubility in zirconolite ceramics. The University of Sheffield.

Aliyu, Y., Kauru, A. Y., Lawal, A., Shuaibu, A., & Abubakar, Y. M. (2025). DFT investigation of magnesium-doped zirconolite for high-level nuclear waste immobilization. A Periodical of the Faculty of Natural and Applied Sciences, UMYU, Katsina, 4(1), 297–304. https://doi.org/10.56919/usci.2541.029

Aliyu, Y., Ibrahim, N., Yahaya, B., & Muhammad, A. (2024). Ab-initio investigation of gadolinium zirconate pyrochlore for substantial nuclear waste applications. A Periodical of the Faculty of Natural and Applied Sciences, UMYU, Katsina, 3(2), 180–185. https://doi.org/10.56919/usci.2432.020

Barlow, S. T., Fisher, A. J., Bailey, D. J., Blackburn, L. R., Stennett, M. C., Hand, R. J., Morgan, S. P., Hyatt, N. C., & Corkhill, C. L. (2021). Thermal treatment of nuclear fuel-containing Magnox sludge radioactive waste. Journal of Nuclear Materials, 552, 152965. https://doi.org/10.1016/j.jnucmat.2021.152965

Bettini, A. (2008). Introduction to elementary particle physics. Cambridge University Press. https://doi.org/10.1017/CBO9780511809019

Biswas, S., Edwards, S. J., Wang, Z., Si, H., Vintró, L. L., Twamley, B., Kowalski, P. M., & Baker, R. J. (2019). Americium incorporation into studtite: A theoretical and experimental study. Dalton Transactions, 48(34), 13057–13063. https://doi.org/10.1039/C9DT02848J

Blackburn, L. R., Bailey, D. J., Sun, S. K., Gardner, L. J., Stennett, M. C., Corkhill, C. L., & Hyatt, N. C. (2021). Review of zirconolite crystal chemistry and aqueous durability. Advances in Applied Ceramics, 120(2), 69–83. https://doi.org/10.1080/17436753.2021.1877596

Blackburn, L. R., Cole, M. R., Gardner, L. J., Bailey, D. J., Kuman, M., Mason, A. R., Sun, S. K., Maddrell, E. R., Stennett, M. C., Corkhill, C. L., & Hyatt, N. C. (2021). Synthesis and characterisation of HIP Ca0.80Ce0.20ZrTi1.60Cr0.40O7 zirconolite and observations of the ceramic-canister interface. MRS Advances, 6(4–5), 112–118. https://doi.org/10.1557/s43580-021-00055-8

Blackburn, L. R., Sun, S. K., Lawson, S. M., Gardner, L. J., Ding, H., Corkhill, C. L., Maddrell, E. R., Stennett, M. C., & Hyatt, N. C. (2020). Synthesis and characterisation of Ca1-xCexZrTi2-2xCr2xO7: Analogue zirconolite wasteform for the immobilisation of stockpiled UK plutonium. Journal of the European Ceramic Society, 40(15), 5909–5919. https://doi.org/10.1016/j.jeurceramsoc.2020.05.066

Bosbach, D., Brandt, F., Bukaemskiy, A., Deissmann, G., Kegler, P., Klinkenberg, M., Kowalski, P. M., Modolo, G., Niemeyer, I., Neumeier, S., & Vinograd, V. (2020). Research for the safe management of nuclear waste at Forschungszentrum Jülich: Materials chemistry and solid solution aspects. Advanced Engineering Materials, 22(6). https://doi.org/10.1002/adem.201901417

Clark, B. M., Sundaram, S. K., & Misture, S. T. (2017). Polymorphic transitions in cerium-substituted zirconolite (CaZrTi2O7). Scientific Reports, 7(1), 2–10. https://doi.org/10.1038/s41598-017-06407-5

Drey, D. L., O'Quinn, E. C., Subramani, T., Lilova, K., Baldinozzi, G., Gussev, I. M., Fuentes, A. F., Neuefeind, J. C., Everett, M., Sprouster, D., Navrotsky, A., Ewing, R. C., & Lang, M. (2020). Disorder in Ho2Ti2−xZrxO7: Pyrochlore to defect fluorite solid solution series. RSC Advances, 10(57), 34632–34650. https://doi.org/10.1039/D0RA07118H

E. R. Vance, J. V. Hanna, B. A. Hunter, B. D. Begg, D. S. Perera, H. L., & Z. -m. Z. (2002). Substitution of Zr, Mg, Al, Fe, Mn, Co, and Ni in zirconolite CaZrTi2O7. Environmental Issues and Waste Management VIII/American Ceramics Society, 313–320.

Foxhall, H. R., Travis, K. P., & Owens, S. L. (2014). Effect of plutonium doping on radiation damage in zirconolite: A computer simulation study. Journal of Nuclear Materials, 444(1–3), 220–228. https://doi.org/10.1016/j.jnucmat.2013.09.036

Gera, F. (1974). The classification of radioactive wastes. Health Physics, 27(1), 113–121. https://doi.org/10.1097/00004032-197407000-00015

Heuser, J. M., Neumeier, S., Peters, L., Schlenz, H., Bosbach, D., & Deissmann, G. (2019). Structural characterisation of metastable Tb- and Dy-monazites. Journal of Solid State Chemistry, 273, 45–52. https://doi.org/10.1016/j.jssc.2019.02.028

Huittinen, N., Arinicheva, Y., Kowalski, P. M., Vinograd, V. L., Neumeier, S., & Bosbach, D. (2017). Probing structural homogeneity of La1-xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. Journal of Nuclear Materials, 486, 148–157. https://doi.org/10.1016/j.jnucmat.2017.01.024

Jafar, M., Achary, S. N., Salke, N. P., Sahu, A. K., Rao, R., & Tyagi, A. K. (2016). X-ray diffraction and Raman spectroscopic investigations on CaZrTi2O7-Y2Ti2O7 system: Delineation of phase fields consisting of potential ceramic host materials. Journal of Nuclear Materials, 475, 192–199. https://doi.org/10.1016/j.jnucmat.2016.04.016

Jafar, M., Phapale, S. B., Nigam, S., Achary, S. N., Mishra, R., Majumder, C., & Tyagi, A. K. (2021). Implication of aliovalent cation substitution on structural and thermodynamic stability of Gd2Ti2O7: Experimental and theoretical investigations. Journal of Alloys and Compounds, 859, 157781. https://doi.org/10.1016/j.jallcom.2020.157781

Jafar, Mohsin, Phapale, S. B., Mandal, B. P., Mishra, R., & Tyagi, A. K. (2015). Preparation and structure of uranium-incorporated Gd2Zr2O7 compounds and their thermodynamic stabilities under oxidizing and reducing conditions. Inorganic Chemistry, 54(19), 9447–9457. https://doi.org/10.1021/acs.inorgchem.5b01300

Ji, S., Li, Y., Ma, S., Liu, C., Shih, K., & Liao, C. Z. (2018). Synergistic effects of Ln and Fe co-doping on phase evolution of Ca1-xLnxZrTi2-xFexO7 (Ln = La, Nd, Gd, Ho, Yb) ceramics. Journal of Nuclear Materials, 511, 428–437. https://doi.org/10.1016/j.jnucmat.2018.09.043

Kong, L., Zhang, Y., Karatchevtseva, I., Blackford, M. G., Lumpkin, G. R., & Triani, G. (2014). Synthesis and characterization of Nd2SnxZr2-xO7 pyrochlore ceramics. Ceramics International, 40(1 PART A), 651–657. https://doi.org/10.1016/j.ceramint.2013.06.051

Li, J., Xu, D., Wang, W., Wang, X., Mao, Y., Zhang, C., Jiang, W., & Wu, C. (2020). Review on selection and experiment method of commonly studied simulated radionuclides in researches of nuclear waste solidification. Scientific Reports, 10. https://doi.org/10.1155/2020/3287320

Lv, P., Chen, L., Zhang, B., Zhang, D., Yuan, W., Duan, B., Guan, Y., Pan, C., Chen, Z., Zhang, L., & Wang, T. (2019). The effects of temperature and Ce-dopant concentration on the synthesis of zirconolite glass-ceramic. Ceramics International, 45(9), 11819–11825. https://doi.org/10.1016/j.ceramint.2019.03.060

Ma, S., Ji, S., Liao, C., Liu, C., Shih, K., & He, W. (2018). Effects of ionic radius on phase evolution in Ln-Al co-doped Ca1-xLnxZrTi2-xAlxO7 (Ln = La, Nd, Gd, Ho, Yb) solid solutions. Ceramics International, 44(13). https://doi.org/10.1016/j.ceramint.2018.05.149

Ojovan, M. I. (2014). Glasses for nuclear waste immobilization. Elsevier. https://doi.org/10.1016/B978-0-08-099392-8.00020-6

Orlova, A. I., & Ojovan, M. I. (2019). Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 12(16). https://doi.org/10.3390/ma12162638

Pastina, B., & Laverne, J. A. (2021). An alternative conceptual model for the spent nuclear fuel-water interaction in deep geologic disposal conditions. Applied Sciences, 11(18). https://doi.org/10.3390/app11188566

Schreinemachers, C., Leinders, G., Mennecart, T., Cachoir, C., Lemmens, K., Verwerft, M., Brandt, F., Deissmann, G., Modolo, G., & Bosbach, D. (2022). Caesium and iodine release from spent mixed oxide fuels under repository relevant conditions: Initial leaching results. MRS Advances, 7(5–6), 100–104. https://doi.org/10.1557/s43580-022-00220-7

Shuaibu, A., Abdu, S., Aliyu, Y., & Kauru, Y. A. (2020). An investigation of structural and electronic properties of zirconolite (CaZrTi2O7) using density functional theory. FUW Trends in Science & Technology Journal, 5(3), 943–947.

Singh, B. K., Hafeez, M. A., Kim, H., Hong, S., Kang, J., & Um, W. (2021). Inorganic waste forms for efficient immobilization of radionuclides. ACS ES&T Engineering, 1(8), 1149–1170. https://doi.org/10.1021/acsestengg.1c00184

Sun, S., Stennett, M. C., Corkhill, C. L., & Hyatt, N. C. (2018). Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition. Journal of Nuclear Materials, 500, 22–25. https://doi.org/10.1016/j.jnucmat.2017.12.021

Tanti, J., & Kaltsoyannis, N. (2021). Computational study of the substitution of early actinides and Ce into zirconolite. Journal of Nuclear Materials, 543, 152525. https://doi.org/10.1016/j.jnucmat.2020.152525

Vejmelkova, E., Cachova, M., Scheinherrova, L., Konvalinka, P., Keppert, M., Bezdicka, P., & Cerny, R. (2018). Mechanical and thermal properties of concrete suitable for radioactive waste disposal sites. IOP Conference Series: Materials Science and Engineering, 385(1). https://doi.org/10.1088/1757-899X/385/1/012061

Wei, Z. J., Bao, W., Sun, S. K., Blackburn, L. R., Tan, S. H., Gardner, L. J., Guo, W. M., Xu, F., Hyatt, N. C., & Lin, H. T. (2021). Synthesis of zirconolite-2M ceramics for immobilisation of neptunium. Ceramics International, 47(1), 1047–1052. https://doi.org/10.1016/j.ceramint.2020.08.220

Zhou, Y., Liao, C., Leung, K. M., Ma, S., Chan, T. S., & Shih, K. (2022). Low charge compensator (Mg2+) causing a new REE-end 3O structure (REE=Rare Earth Element) and a different phase transformation in Nd3+ co-doped zirconolite: Investigation by X-ray structural analysis. Ceramics International, 48(13), 18596–18604. https://doi.org/10.1016/j.ceramint.2022.03.131

Published

2025-05-17

How to Cite

Aliyu, Y., & Yusuf, B. (2025). Synthesis and Characterisation of Magnesium-Doped Zirconolite-2M Ceramic. UMYU Scientifica, 4(2), 67–75. https://doi.org/10.56919/usci.2542.009