Ecological Characterization of Malaria Vector Habitats in Awe and Nassarawa Eggon Local Government Areas, Nasarawa State, Nigeria
DOI:
https://doi.org/10.56919/usci.2541.031Keywords:
Anopheles, Habitat types, Malaria, Mosquito, Nasarawa StateAbstract
Study’s Excerpt:
• Mosquito larvae exhibited heterogeneous distribution across breeding habitats in Awe and Nasarawa Eggon.
• Anopheline and culicine larvae were sampled from five habitat types, including puddles and rice fields.
• Anopheles gambiae s.l. emerged more frequently than Anopheles funestus in the study areas.
• Temperature, EC, salinity, TDS, and CO₂ positively influenced larval abundance, unlike pH, DO₂, and alkalinity.
• These findings provide insights for optimizing vector control in diverse breeding environments.
Full Abstract:
Malaria remains a significant global health concern due to Anopheles mosquitoes. This study assessed malaria vector populations in Awe and Nassarawa Eggon LGAs of Nasarawa State, Nigeria. Mosquito larvae were collected employing standard dipping methods, while physicochemical parameters were analyzed in-situ and in the laboratory using standard methods. A total of 1,405 mosquito larvae were collected, with a higher abundance in Awe (95.2%) than in Nassarawa Eggon (4.8%). Culicines comprised 84.8% of the total larvae, while anophelines accounted for 15.2%. Although habitat type did not significantly influence Anopheles abundance (P = 0.364), puddles (52.5%) and rice fields (28.6%) supported the highest larval populations. The highest mosquito abundance was recorded at a 351–400m gradient (47.8%). No significant association (P = 0.65) was found between larval abundance and proximity to human dwellings. Temperature (r = 0.395), electrical conductivity (r = 0.303), salinity (r = 0.407), total dissolved solids (r = 0.390), and carbon dioxide (r = 0.015) positively influenced Anopheles abundance, while pH (r = -0.039), alkalinity (r = -0.024), and dissolved oxygen (r = -0.067) had negative correlations. Anopheles gambiae (87.2%) was more abundant than An. funestus (12.8%), with no significant difference (P = 0.0881) between species in both LGAs. Continued mosquito surveillance in Awe and Nassarawa Eggon is necessary to enhance vector control strategies and malaria prevention efforts.
References
Dikin, S. K., Schuster-Wallace, C. J., & Elliot, S. J. (2011). Developing a vulnerability mapping methodology: Applying the water-associated disease index to dengue in Malaysia. PLoS ONE, 8(5), Article e63584. https://doi.org/10.1371/journal.pone.0063584
Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., Lwin, K. M., Ariey, F., Hanpithakpong, W., Lee, S. J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S. S., Yeung, S., Singhasivanon, P., ... White, N. J. (2009). Artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine, 361(5), 455-467. https://doi.org/10.1056/NEJMoa0808859
Ferede, G., Tiruneh, M., Abate, E., Kassa, W. J., Wondimeneh, Y., Damtie, D., & Tessema, B. (2018). Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia. Epidemiology and Health, 40, Article e2018015. https://doi.org/10.4178/epih.e2018015
Okorie, P. N., McKenzie, F. E., Ademowo, O. G., Bockarie, M., & Kelly-Hope, L. (2011). Nigeria Anopheles vector database: An overview of 100 years' research. PLoS ONE, 6(12), Article e28347. https://doi.org/10.1371/journal.pone.0028347
Snow, R. W., Marsh, K., & Le Sueur, D. (1996). The need for maps of transmission intensity to guide malaria control in Africa. Parasitology Today, 12(11), 455-457. https://doi.org/10.1016/S0169-4758(96)30032-X
Akeju, A. V., Olusi, T. A., & Simon-Oke, I. A. (2022). Effect of physicochemical parameters on Anopheles mosquitoes larval composition in Akure North Local Government Area of Ondo State, Nigeria. The Journal of Basic and Applied Zoology, 83(1), 34. https://doi.org/10.1186/s41936-022-00298-3
Alkhayat, F. A., Ahmad, A. H., Rahim, J., Dieng, H., Ismail, B. A., Imran, M., Sheikh, U. A., Shahzad, M. S., Abid, A. D., & Munawar, K. (2020). Characterization of mosquito larval habitats in Qatar. Saudi Journal of Biological Sciences, 27(9), 2358-2365. https://doi.org/10.1016/j.sjbs.2020.07.006
Chan, K., Tusting, L. S., Bottomley, C., Saito, K., Djouaka, R., & Lines, J. (2022). Malaria transmission and prevalence in rice-growing versus non-rice-growing villages in Africa: A systematic review and meta-analysis. The Lancet Planetary Health, 6(3), e257-e269. https://doi.org/10.1016/S2542-5196(21)00349-1
Coetzee, M. (2020). Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria Journal, 19(1), 70. https://doi.org/10.1186/s12936-020-3144-9
Doumbe-Belisse, P., Kopya, E., Ngadjeu, C. S., Sonhafouo-Chiana, N., Talipouo, A., Djamouko-Djonkam, L., Awono-Ambene, P. H., Wondji, C. S., Njiokou, F., & Antonio-Nkondjio, C. (2021). Urban malaria in sub-Saharan Africa: Dynamic of the vectorial system and the entomological inoculation rate. Malaria Journal, 20(1), 364. https://doi.org/10.1186/s12936-021-03891-z
Egwu, O. A., Ohaeri, C. C., Amaechi, E. C., & Ehisianya, C. N. (2018). Distribution and abundance of mosquito larvae in Ohafia, Abia State, Nigeria. Cuadernos de Investigación UNED, 10(2), 379-385. https://doi.org/10.22458/urj.v10i2.2166
Ekedo, C. M., Okore, O. O., Uzoma, V. C., & Okoro, P. I. (2020). Habitat preference of mosquito larvae in Michael Okpara University of Agriculture, Umudike, Nigeria. International Journal of Mosquito Research, 7(4), 6-9.
Getachew, D., Balkew, M., & Tekie, H. (2020). Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malaria Journal, 19(1), 65. https://doi.org/10.1186/s12936-020-3145-8
Gillies, M. T., & Coetzee, M. (1987). A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). South African Institute for Medical Research.
Gowelo, S., Chirombo, J., Koenraadt, C. J. M., Mzilahowa, T., van den Berg, H., Takken, W., & McCann, R. S. (2020). Characterisation of anopheline larval habitats in southern Malawi. Acta Tropica, 212, Article 105558. https://doi.org/10.1016/j.actatropica.2020.105558
Hassan, S. C., Olayemi, I. K., Omalu, I. C. J., Adefolalu, F. S., Eke, S. S., & Otuu, C. A. (2021). Spatiotemporal distribution and composition of Anopheles mosquito species in some selected eco-settings of Nasarawa State North Central Nigeria. American Journal of Biology and Life Sciences, 9(1), 1-9.
Hu, Y., Xu, Y., Wang, H., Ren, H., & He, Y. (2024). Assessment of an automated titration system for batch measurements of total alkalinity. Marine Chemistry, 260, Article 104435. https://doi.org/10.1016/j.marchem.2024.104435
Kinga, H., Kengne-Ouafo, J. A., King, S. A., Egyirifa, R. K., Aboagye-Antwi, F., & Akorli, J. (2022). Water physicochemical parameters and microbial composition distinguish Anopheles and Culex mosquito breeding sites: Potential as ecological markers for larval source surveillance. Journal of Medical Entomology, 59(5), 1817-1826. https://doi.org/10.1093/jme/tjac115
Lapang, P. M., Ombugadu, A., Ishaya, M., Mafuyai, M. J., Njila, H. L., Nkup, C. D., & Mwansat, G. S. (2019). Abundance and diversity of mosquito species larvae in Shendam LGA, Plateau State, North-Central Nigeria: A panacea for vector control strategy. Journal of Zoological Research, 3(3), 25-33. https://doi.org/10.22259/2637-5575.0303004
Li, C., Gao, Y., Zhao, Z., Dang, D., Zhou, R., Wang, J., Zhang, Q., & Liu, Q. (2021). Potential geographical distribution of Anopheles gambiae worldwide under climate change. Journal of Biosafety and Biosecurity, 3(2), 82-89. https://doi.org/10.1016/j.jobb.2021.08.004
Lin, J., Tsai, H., & Lyu, W. (2021). An integrated wireless multi-sensor system for monitoring the water quality of aquaculture. Sensors, 21(24), 8179. https://doi.org/10.3390/s21248179
Mahgoub, M. M., Kweka, E. J., & Himeidan, Y. E. (2017). Characterization of larval habitats, species composition and factors associated with the seasonal abundance of mosquito fauna in Gezira, Sudan. Infectious Diseases of Poverty, 6(1), 23. https://doi.org/10.1186/s40249-017-0242-1
Mathania, M. M., Munisi, D. Z., & Silayo, R. S. (2020). Spatial and temporal distribution of Anopheles mosquito's larvae and its determinants in two urban sites in Tanzania with different malaria transmission levels. Parasite Epidemiology and Control, 11, Article e00179. https://doi.org/10.1016/j.parepi.2020.e00179
Mattah, P. A. D., Futagbi, G., Amekudzi, L. K., Mattah, M. M., de Souza, D. K., Kartie-Attipoe, W. D., Bimi, L., & Wilson, M. D. (2017). Diversity in breeding sites and distribution of Anopheles mosquitoes in selected urban areas of southern Ghana. Parasites & Vectors, 10(1), 25. https://doi.org/10.1186/s13071-016-1941-3
Ngowo, H. S., Hape, E. E., Matthiopoulos, J., Ferguson, H. M., & Okumu, F. O. (2021). Fitness characteristics of the malaria vector Anopheles funestus during an attempted laboratory colonization. Malaria Journal, 20(1), 148. https://doi.org/10.1186/s12936-021-03677-3
Njila, H. L., Sani, H. S., Ombugadu, A., & Tanko, N. S. (2023). Evaluation of coloured containers as attractants to gravid mosquitoes for oviposition. Trends in Technical & Scientific Research, 6(1), 1-8. https://doi.org/10.19080/TTSR.2023.06.555679
Obi, O. A., Nock, I. H., & Adebote, D. A. (2019). Biodiversity of microinvertebrates co-inhabiting mosquitoes habitats in patchy rock pools on inselbergs within Kaduna State, Nigeria. The Journal of Basic and Applied Zoology, 80(1), 57. https://doi.org/10.1186/s41936-019-0125-z
Oforka, C., Omotayo, A., & Adeleke, M. (2024). Seasonal diversity in mosquito larval ecology and its public health implications in urban slums of Lagos, Nigeria. The American Journal of Tropical Medicine and Hygiene. Advance online publication. https://doi.org/10.4269/ajtmh.23-0192
Oguche, O. D., Auta, I. K., Ibrahim, B., Yayock, H. C., & Johnson, O. (2022). Breeding sites characteristics and mosquito abundance in some selected locations within Kaduna metropolis. FUDMA Journal of Sciences, 6(6), 70-75. https://doi.org/10.33003/fjs-2022-0606-1113
Okoh, H. I., Akinfemiwa, C. A., Iyeh, C., Mogaji, H. O., Omonijo, A. O., & Awe, O. B. (2020). Spatial distribution and breeding habitat characterization of Anopheles mosquitoes in Ado-Ekiti, Ekiti State, Nigeria. FUOYE Journal of Pure and Applied Sciences, 5(1), 154-164.
Omondi, C. J., Nonoh, J., & Ntabo, R. (2023). Characterization of Anopheles funestus larval habitats in Fiyoni, Kwale County, Kenya: Insights into malaria vector ecology and control. European Journal of Ecology, 9(2). https://doi.org/10.17161/eurojecol.v9i2.21173
Onen, H., Odong, R., Chemurot, M., Tripet, F., & Kayondo, J. K. (2021). Predatory and competitive interaction in Anopheles gambiae sensu lato larval breeding habitats in selected villages of central Uganda. Parasites & Vectors, 14(1), 331. https://doi.org/10.1186/s13071-021-04926-9
Oniya, M. O., Adeyekun, A. L., & Olusi, T. A. (2019). Ecological factors favoring mosquito breeding in Ifedore Local Government Area of Ondo State, Nigeria. Journal of Ecology and the Natural Environment, 11(6), 68-74. https://doi.org/10.5897/JENE2019.0756
Osidoma, E., Pam, V., Uzoigwe, N., Ombugadu, A., Omalu, I., Maikenti, J., Attah, A., Ashigar, M., & Dogo, S. (2023). A study on mosquitoes composition and malaria transmission in some communities in Doma Local Government Area of Nasarawa State, Nigeria. Journal of Bioscience and Biotechnology Discovery, 8(1). https://doi.org/10.31248/JBBD2023.176
Owolabi, D. O., & Bagbe, A. S. (2020). Assessment of physico-chemical and ecological variables in selected natural breeding sites of mosquitoes in Ibadan, Oyo State, Nigeria. Archives of Pharmacy & Pharmacology Research, 1(5), APPR.MS.ID.000521. https://doi.org/10.33552/APPR.2019.01.000521
Pimenta, A. R., Oczkowski, A. J., McKinney, R. A., & Grear, J. S. (2023). Geographical and seasonal patterns in the carbonate chemistry of Narragansett Bay, RI. Regional Studies in Marine Science, 62, Article 102903. https://doi.org/10.1016/j.rsma.2023.102903
Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (Eds.). (2012). Standard methods for the examination of water and wastewater (22nd ed.). American Public Health Association.
Ryan, S. J., Lippi, C. A., & Zermoglio, F. (2020). Shifting transmission risk for malaria in Africa with climate change: A framework for planning and intervention. Malaria Journal, 19(1), 170. https://doi.org/10.1186/s12936-020-03224-6
Sallum, M. A. M., Obando, R. G., Carrejo, N., & Wilkerson, R. C. (2020). Identification keys to the Anopheles mosquitoes of South America (Diptera: Culicidae). I. Introduction. Parasites & Vectors, 13(1), 583. https://doi.org/10.1186/s13071-020-04298-6
Seal, M., & Chatterjee, S. (2023). Combined effect of physico-chemical and microbial quality of breeding habitat water on oviposition of malarial vector Anopheles subpictus. PLoS ONE, 18(3), Article e0282825. https://doi.org/10.1371/journal.pone.0282825
Surendran, S. N., Jayadas, T. T. P., Thiruchenthooran, V., Raveendran, S., Tharsan, A., Santhirasegaram, S., Sivabalakrishnan, K., Karunakaran, K., Ponnaiah, B., Gomes, L., Malavige, G. N., & Ramasamy, R. (2021). Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka. Parasites & Vectors, 14(1), 162. https://doi.org/10.1186/s13071-021-04640-6
Ukubuiwe, A. C., Olayemi, I. K., Arimoro, F. O., Omalu, I. C. J., Baba, B. M., Ukubuiwe, C. C., Odeyemi, M. O., & Adeyemi, K. A. (2018). Influence of rearing-water temperature on life stages' vector attributes, distribution and utilisation of metabolic reserves in Culex quinquefasciatus (Diptera: Culicidae): Implications for disease transmission and vector control. The Journal of Basic and Applied Zoology, 79(1), 32. https://doi.org/10.1186/s41936-018-0045-3
Wilke, A. B. B., Chase, C., Vasquez, C., Carvajal, A., Medina, J., Petrie, W. D., & Beier, J. C. (2019). Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Scientific Reports, 9(1), 15335. https://doi.org/10.1038/s41598-019-51787-5
Wohl, M., & McMeniman, C. J. (2022). Batch rearing Aedes aegypti. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prot108017
World Health Organization. (2022). World malaria report 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
World Health Organization. (2024). World malaria report 2024: Addressing inequity in the global malaria response. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024
Zengenene, M. P., Munhenga, G., Okumu, F. O., & Koekemoer, L. L. (2022). Effect of larval density and additional anchoring surface on the life-history traits of a laboratory colonized Anopheles funestus strain. Medical and Veterinary Entomology, 36(2), 168-175. https://doi.org/10.1111/mve.12563
Zogo, B., Ahoua Alou, L. P., Koffi, A. A., Fournet, F., Dahounto, A., Dabiré, R. K., Baba-Moussa, L., Morou, N., & Pennetier, C. (2019). Identification and characterization of Anopheles spp. breeding habitats in the Korhogo area in northern Côte d'Ivoire: A study prior to a Bti-based larvicide intervention. Parasites & Vectors, 12(1), 146. https://doi.org/10.1186/s13071-019-3404-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Victor Ameh Adejoh, Akwashiki Ombugadu, James Ishaku Maikenti, Muhammed Ahmed Ashigar, Victoria Adamu Pam

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.