Unlocking Sustainable Energy: Nutritional Profiling and Biomethane Potential of Cereal Food Waste for Sustainable Energy Recovery
DOI:
https://doi.org/10.56919/usci.2542.020Keywords:
Anaerobic Digestion, Biomethane potential, Volatile Solids, Energy Recovery, Electricity generation potentialAbstract
Study’s Excerpt:
• Novelty: It's the first study on cereal waste biomethane potential in Malumfashi, Nigeria
• Methods: AOAC methods and Baserga model were used to analyze nutrient composition and predicted biomethane yield.
• Results: High volatile solids (85.62%) and biomethane yield (577.3 L /kgVS) suggest strong energy recovery potential.
• Implications: Findings support SDG 7 and 12, aids policy decisions.
Full Abstract:
Cereal food waste represents a significant untapped resource for bioenergy, yet its optimal utilization remains constrained by insufficient data on substrate-specific nutritional profiling and biomethane potential. This study addresses this gap by characterizing the nutrient composition and theoretical biomethane yield of cereal-based food waste in Malumfashi, Nigeria, to evaluate its viability for large-scale energy recovery. Waste samples from local restaurants were analyzed using the Association of Official Analytical Chemists (AOAC) methods for proximate composition (total solids, volatile solids, crude fiber, etc.). Biomethane potential was estimated via the Baserga model, with electrical conversion calculated assuming 35% efficiency. Results revealed high total solids (93.66%) and volatile solids (85.62%), with nitrogen-free extracts (73.75%) dominating the waste profile. The estimated biomethane yield reached 577.3 m³/kgVS (52.3% methane), translating to 1,057 kWh/ton of electricity. This work demonstrates cereal food waste as a high-potential substrate for anaerobic digestion, directly supporting SDG 7 (Affordable Energy) and SDG 12 (Responsible Consumption). Findings provide policymakers with evidence to integrate food waste valorization into renewable energy strategies, particularly in urban settings of developing economies.
References
Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review. Environmental Chemistry Letters, 1-28. https://doi.org/10.1007/s10311-024-01789-1
AOAC (Association of Official Analytical Chemists) (2005) Official
Methods of Analysis of the Association of Analytical Chemists. 18th edition. Gaithersburg, MD: AOAC
Banks, C. J., Chesshire, M., Heaven, S., and Arnold, R. (2011). Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology, 102(2), 612-620. https://doi.org/10.1016/j.biortech.2010.08.005
Baserga, U. (1998). Landwirtschaftliche co-vergärungs-biogasanlagen: Biogas aus organischen reststoffen und energiegras (No. 512). Zürich, Switzerland: FAT
Belaïd, F., Al-Sarihi, A., & Al-Mestneer, R. (2023). Balancing climate mitigation and energy security goals amid converging global energy crises: The role of green investments. Renewable Energy, 205, 534-542. https://doi.org/10.1016/j.renene.2023.01.083
Dasa, K. T., Westman, S. Y., Millati, R., Cahyanto, M. N., Taherzadeh, M. J., & Niklasson, C. (2016). Inhibitory effect of long-chain fatty acids on biogas production and the protective effect of membrane bioreactor. BioMed Research International, 2016, Article 7263974, 9 pages. https://doi.org/10.1155/2016/7263974
Efetobor, U. J; Ikpeseni, S. C; Sada, S. O. (2022). Determination of Proximate, Ultimate and Structural Properties of Elephant Grass As Biomass Material. J. Appl. Sci. Environ. Manage. 26 (12) 1903-1907 https://dx.doi.org/10.4314/jasem.v26i12.3
El-Araby, R. (2024). Biofuel production: exploring renewable energy solutions for a greener future. Biotechnology for Biofuels and Bioproducts, 17(1), 129. https://doi.org/10.1186/s13068-024-02571-9
FAO. (2021). Global food losses and food waste. http://www.fao.org/save-food/resources
Fărcaș, A. C., Socaci, S. A., Nemeș, S. A., Pop, O. L., Coldea, T. E., Fogarasi, M., & Biriș-Dorhoi, E. S. (2022). An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients, 14(17), 3470. https://doi.org/10.3390/nu14173470
Hassan, Q., Viktor, P., Al-Musawi, T. J., Ali, B. M., Algburi, S., Alzoubi, H. M., ... & Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. https://doi.org/10.1016/j.ref.2024.100545
Iris, K. M., Tsang, D. C., Yip, A. C., Chen, S. S., Wang, L., Ok, Y. S., & Poon, C. S. (2017). Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity. Bioresource technology, 237, 222-230. https://doi.org/10.1016/j.biortech.2017.01.017
Jabeen, M., Sheikh, Z., Yousaf, S., Haider, M. R., & Malik, R. (2015). High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. International Biodeterioration & Biodegradation, 102, 149–153. https://doi.org/10.1016/j.ibiod.2015.03.023
Kiehbadroudinezhad, M., Merabet, A., & Hosseinzadeh-Bandbafha, H. (2024). Landfill source of greenhouse gas emission. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion (pp. 123-145). Elsevier. https://doi.org/10.1016/B978-0-443-19231-9.00023-5
Luna del Risco, M. A. (2011). Biochemical methane potential of Estonian substrates and evaluation of some inhibitors of anaerobic digestion (Doctoral dissertation, Eesti Maaülikool).
Ma, Y., & Liu, Y. (2019). Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnology advances, 37(7), 107414. https://doi.org/10.1016/j.biotechadv.2019.06.013
Ogwang, I., Kasedde, H., Nabuuma, B., Kirabira, J. B., & Lwanyaga, J. D. (2021). Characterization of biogas digestate for solid biofuel production in Uganda. Scientific African, 12, e00735. https://doi.org/10.1016/j.sciaf.2021.e00735
Opurum, C. C., Nwachukwu, I. N., and Christopher, E. (2021). Predicting the rate of biogas production from the anaerobic digestion of blends of cassava (Manihot esculenta) peels with poultry manure. Issues in Biological Sciences and Pharmaceutical Research, 9(2), 38–47. https://doi.org/10.15739/ibspr.21.005
Ramírez, A. T. O., Tovar, M. R., & Silva-Marrufo, O. (2024). Rice husk reuse as a sustainable energy alternative in Tolima, Colombia. Scientific Reports, 14(1), 10391. https://doi.org/10.1038/s41598-024-60115-5
Salim, A. A., Ahmed, A., Hassan, A. W., Abdulkadir, J., Abdullahi, R., Ityonum, B. I., & Bashir, A. I. (2024). Nutrient Characterization, Biogas and Electricity Generation Potentials of Root and Tuber Wastes. FUDMA journal of sciences, 7(6), 228–233. https://doi.org/10.33003/fjs-2023-0706-2188
Subbarao, P. M., D’Silva, T. C., Adlak, K., Kumar, S., Chandra, R., & Vijay, V. K. (2023). Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environmental Research, 234, 116286. https://doi.org/10.1016/j.envres.2023.116286
Suhartini, S., Lestari, Y. P., and Nurika, I. (2019). Estimation of methane and electricity potential from canteen food waste. IOP Conference Series: Earth and Environmental Science, 230(1), 0–6. https://doi.org/10.1088/1755-1315/230/1/012075
Urugo, M. M., Teka, T. A., Gemede, H. F., Mersha, S., Tessema, A., Woldemariam, H. W., & Admassu, H. (2024). A comprehensive review of current approaches on food waste reduction strategies. Comprehensive Reviews in Food Science and Food Safety, 23(5), e70011. https://doi.org/10.1111/1541-4337.70011
Vasileiadou, A. (2024). From Organic wastes to Bioenergy, Biofuels, and value-added products for urban sustainability and circular economy: a review. Urban Science, 8(3), 121.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ahmad Ahmad Salim, Abdulrazak Ahmed, Abdulhakim Wagini Hassan, Hannah Mukhtar Racheal, Dorcas Damara Abiram, Usama Salisu Khalid , Rimamnyang Albert Kwena, Badamasi Babangida Ahmad

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.