Review on Bacteria Associated with Metal Rusting
DOI:
https://doi.org/10.56919/usci.2433.024Keywords:
Microorganisms, Degradation, Corrosion, MIC, Metal rustingAbstract
Study’s Excerpt/Novelty
- This review provides an overview of microbiologically influenced corrosion (MIC), emphasizing the significant role of bacteria in accelerating metal deterioration across various industries.
- It highlights the complex survival mechanisms bacteria employ in metal-polluted environments, contributing to the corrosion process.
- The study advocates for an interdisciplinary approach to understanding and mitigating MIC while suggesting future studies to prevent and control rusting.
Full Abstract
Metal rusting, also known as corrosion, is the deterioration of a material's characteristics, particularly metals, caused by chemical or electrochemical reactions in the surrounding environment. It consists of the interaction of iron or steel with atmospheric oxygen and moisture, resulting in the creation of iron oxide (rust). Bacteria have an important impact on the development and advancement of metal corrosion. microbiologically influenced corrosion (MIC), is becoming increasingly problematic as it affects multiple materials and industries in society. MIC demonstrates the possible negative effect that microorganisms may cause to a substance. Different categories of bacteria, such as sulfate reducing, sulfate oxidizing, slime forming, and iron oxidizing, are active bacteria involved in bio-corrosion. The bacteria have evolved different ways to survive in the metal-polluted surroundings, including an efflux system pump, complexation/stabilization, enzymatic transformation/detoxification, and plasmid mediation. Effective management of microbial corrosion in different industrial and environmental settings requires the integration of microbiology, materials science, and corrosion engineering. This paper highlights the crucial role of microbiologically driven corrosion, which leads to the deterioration of different materials and consequential economic losses. Furthermore, it highlights future studies that aim to gain a thorough understanding of the mechanisms behind bacterial-induced corrosion and develop strategies to prevent and control rusting.
References
Abbas, M., & Shafiee, M. (2020). An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures, 71, 102718. https://doi.org/10.1016/j.marstruc.2020.102718.
Abioye, O. P., Aransiola, S. A., Victor-Ekwebelem, M. O., Auta, S. H., & Ijah, U. J. J. (2022). Impact and Control of Microbial Biofilms in the Oil and Gas Industry. In Microbial Biofilms (pp. 303-318). eBook ISBN9781003184942
Ahmad, N. A., Kamdi, Z., & Tobi, A. L. M. (2018). Wear and corrosion behavior of tungsten carbide based coating on carbon steel. International Journal of Integrated Engineering, 10(4).
Akpanyung, K. V. and Loto, R. T. (2019). Pitting corrosion evaluation: a review. In Journal of Physics: Conference Series 1378 (2) 022088). IOP Publishing. https://doi.org/10.1088/1742-6596/1378/2/022088
Alamri, A. H. (2020). Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines–An overview. Engineering failure analysis, 116, 104735. https://doi.org/10.1016/j.engfailanal.2020.104735
Anandkumar, B., George, R. P. and Rao, T. S. (2022). Non-Conventional Methods for Biofilm and Biocorrosion Control. In A Treatise on Corrosion Science, Engineering and Technology (513-535). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9302-1_26
Ates, M. (2016). A review on conducting polymer coatings for corrosion protection. Journal of adhesion science and Technology, 30(14), 1510-1536. https://doi.org/10.1080/01694243.2016.1150662
Ayangbenro, A. S. and Abalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health, 14(1), 94. https://doi.org/10.3390/ijerph14010094
Bangar, S. P., Suri, S., Trif, M. and Ozogul, F. (2022). Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46, 101615. https://doi.org/10.1016/j.fbio.2022.101615
Basera, P., Lavania, M. and Lal, B. (2019). Potential of dynamic bacterial communities in the bio-corrosion process: a proof study with surface morphology of metal coupons. RSC advances, 9(30), 17040-17050. https://doi.org/10.1039/C9RA01959F
Bediako, E. B., Huong, Q. L. N., Dankwa, O. K., & Hussein, I. (2023). Corrosion of Oil and Gas Pipelines: A Review of the Common Control Methods and their Limitations. J Petro Chem Eng, 1(1), 19-28.
Beech, I. B. & Sunner, (2004). Towards understanding interactions between biofilms and metals. J. Biocorrosion: Current Opinion in Biotechnology 15, 181–186. https://doi.org/10.1016/j.copbio.2004.04.001
Bender, R., Féron, D., Mills, D., Ritter, S., Bäßler, R., Bettge, D.and Zheludkevich, M. (2022). Corrosion challenges towards a sustainable society. Materials and corrosion, 73(11), 1730-1751. https://doi.org/10.1002/maco.202213140
Černoušek, T., Ševců, A., Shrestha, R., Steinová, J., Kokinda, J., & Vizelková, K. (2021). Microbially influenced corrosion of container material. In The Microbiology of Nuclear Waste Disposal (pp. 119-136). Elsevier. https://doi.org/10.1016/B978-0-12-818695-4.00006-X
Chang, Y. J., Hung, C. H., Lee, J. W., Chang, Y. T., Lin, F. Y. and Chuang, C. J. (2015). A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials. International Biodeterioration and Biodegradation, 102, 330-338. https://doi.org/10.1016/j.ibiod.2015.03.008
Chaudhary, S., Tanvi, R. D., & Goyal, S. (2019). Different applications of sulphur oxidizing bacteria: A review. Int. J. Curr. Microbiol. App. Sci, 8(11), 770-778. DOI: https://doi.org/10.20546/ijcmas.2019.811.091
Chen, H., Lv, Z., Lu, L., Huang, Y., & Li, X. (2021). Correlation of micro-galvanic corrosion behavior with corrosion rate in the initial corrosion process of dual phase steel. Journal of Materials Research and Technology, 15, 3310-3320. https://doi.org/10.1016/j.jmrt.2021.09.123
Chugh, B., Thakur, S., & Singh, A. K. (2020). Microbiologically influenced corrosion inhibition in oil and gas industry. Corrosion inhibitors in the oil and gas industry, 321-338. https://doi.org/10.1002/9783527822140.ch13
Cuerda-Correa, E. M., Alexandre-Franco, M. F., & Fernández-González, C. (2019). Advanced oxidation processes for the removal of antibiotics from water. An overview. Water, 12(1), 102. https://doi.org/10.3390/w12010102
Cui, M., Wang, B. and Wang, Z. (2019). Nature‐inspired strategy for anticorrosion. Advanced Engineering Materials, 21(7), 1801379. https://doi.org/10.1002/adem.201801379
Dong, Y., Jiang, B., Xu, D., Jiang, C., Li, Q. and Gu, T. (2018). Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 123, 34-44. https://doi.org/10.1016/j.bioelechem.2018.04.014
Ebrahiminezhad, A., Manafi, Z., Berenjian, A., Kianpour, S., & Ghasemi, Y. (2017). Iron-reducing bacteria and iron nanostructures. Journal of Advanced Medical Sciences and Applied Technologies, 3(1), 9-16. https://doi.org/10.1016/j.jmrt.2021.09.123
Echeverria, C., Torres, M. D. T., Fernández-García, M., de la Fuente-Nunez, C., & Muñoz-Bonilla, A. (2020). Physical methods for controlling bacterial colonization on polymer. https://doi.org/10.1016/j.biotechadv.2020.107586
Emerson, D. (2018). The role of iron-oxidizing bacteria in biocorrosion: A. review Biofouling, 34(9), 989-1000. https://doi.org/10.1080/08927014.2018.1526281
Enning, D. and Garrelfs, J. (2014). Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Applied and Environmental Microbiology 80, 1226–1236. https://doi.org/10.1128/AEM.02848-13
Fayomi, O. S. I., Akande, I. G. and Odigie, S. (2019). Economic impact of corrosion in oil sectors and prevention: An overview. In Journal of Physics: Conference Series 1378 (2), (022037). IOP Publishing. https://doi.org/10.1088/1742-6596/1378/2/022037
Fu, C., Jin, N., Ye, H., Liu, J. and Jin, X. (2018). Non-uniform corrosion of steel in mortar induced by impressed current method: An experimental and numerical investigation. Construction and Building Materials, 183, 429-438. https://doi.org/10.1016/j.conbuildmat.2018.06.183
Ghasemi, M. and Sivaloganathan, S. (2021). Effect of inertial acoustic cavitation on antibiotic efficacy in biofilms. Applied Mathematics and Mechanics, 42(10), 1397-1422. https://doi.org/10.1007/s10483-021-2776-7
Gu, T., Jia, R., Unsal, T. and Xu, D. (2019). Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. Journal of materials science and technology, 35(4), 631-636. https://doi.org/10.1016/j.jmst.2018.10.026
Harsimran, S., Santosh, K., and Rakesh, K. (2021). Overview of corrosion and its control: A critical review. Proc. Eng. Sci, 3(1), 13-24. https://doi.org/10.24874/PES03.01.002
Howell, A., & Saxon Jr, G. (2005, January). The practical application and innovation of cleaning technology for condensers. In ASME Power Conference (Vol. 41820, pp. 109-117). https://doi.org/10.1115/PWR2005-50173
Jack, T. R. (2021). Biological corrosion failures. https://doi.org/10.31399/asm.hb.v11.a0006788
Jafarzadeh, S., Zhao, J., Shakouri, M., & Bobaru, F. (2022). A peridynamic model for crevice corrosion damage. Electrochimica Acta, 401, 139512. https://doi.org/10.1016/j.electacta.2021.139512
Jasu, A., Lahiri, D., Nag, M., & Ray, R. R. (2021). Biofilm-associated metal bioremediation. Biotechnology for Sustainable Environment, 201-221. https://doi.org/10.3390/w14040595
Javaherdashti, R., and Javaherdashti, R. (2017). Microbiologically influenced corrosion (MIC) 29-79). Springer International Publishing. https://doi.org/10.1007/978-3-319-44306-5_4
Jia, R., Unsal, T., Xu, D., Lekbach, Y. and Gu, T. (2019). Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International biodeterioration and biodegradation, 137, 42-58. https://doi.org/10.1016/j.ibiod.2018.11.007
Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J., ... & Pina, M. D. F. (2019). Antimicrobial polymers: the potential replacement of existing antibiotics. International Journal of Molecular Sciences, 20(11), 2747. https://doi.org/10.3390/ijms20112747
Kappler, A., Emerson, D., Gralnick, J. A., Roden, E. E., & Muehe, E. M. (2015). Geomicrobiology of iron. Ehrlich’s geomicrobiology, 6, 635. https://doi.org/10.1201/b19121
Kip, N., & Van Veen, J. A. (2015). The dual role of microbes in corrosion. The ISME journal, 9(3), 542-551. https://doi.org/10.1038/ismej.2014.169
Kokilaramani, S., Al-Ansari, M. M., Rajasekar, A., Al-Khattaf, F. S., Hussain, A., & Govarthanan, M. (2021). Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures-A review. Chemosphere, 265, 129075. https://doi.org/10.1016/j.chemosphere.2020.129075
Kumar, S., Katyal, P., Chaudhary, R. N., and Singh, V. (2022). Assessment of factors influencing bio-corrosion of magnesium based alloy implants: A review. Materials Today: Proceedings, 56, 2680-2689. https://doi.org/10.1016/j.matpr.2021.09.262
Kushkevych, I., Cejnar, J., Treml, J., Dordević, D., Kollar, P., & Vítězová, M. (2020). Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells, 9(3), 698. https://doi.org/10.3390/cells9030698
Lee, W. S., Aziz, H. A., & Tajarudin, H. A. (2020). A recent development on iron-oxidising bacteria (IOB) applications in water and wastewater treatment. Journal of Water Process Engineering, 49, 103109. https://doi.org/10.1016/j.jwpe.2022.103109
Li, M., Gu, T. & Zhang, G. (2017). Bacteria and archaea involved in iron corrosion: A review. Environmental Science and Pollution Research 24, 3157–3172. https://doi.org/10.1007/s11356-016-8197-0
Little, B. J., Blackwood, D. J., Hinks, J., Lauro, F. M., Marsili, E., Okamoto, A., & Flemming, H. C. (2020). Microbially influenced corrosion. Corrosion Science, 170, 108641. https://doi.org/10.1016/j.corsci.2020.108641
Liu, R., Ivanovich, N., Zhu, C., Yeo, Y. P., Wang, X., Seita, M., & Lauro, F. M. (2023). Influence of grain size and crystallographic orientation on microbially influenced corrosion of low-carbon steel in artificial seawater. Materials & Design, 234, 112353. https://doi.org/10.1016/j.matdes.2023.112353
Machuca Suarez, L., Lepkova, K., and Suarez, E. (2019). The role of bacteria in under-deposit corrosion in oil and gas facilities: A review of mechanisms, test methods and corrosion inhibition. Corrosion & Materials, 44(1), 80-87. https://doi.org/10.5006/3223
Madirisha, M., Hack, R., and Van der Meer, F. (2022). The role of organic acid metabolites in geo-energy pipeline corrosion in a sulfate reducing bacteria environment. Heliyon, 8(5). https://doi.org/10.1016/j.heliyon.2022.e09420
Magowo, W. E., Sheridan, C., and Rumbold, K. (2020). Global Co-occurrence of Acid Mine Drainage and Organic Rich Industrial and Domestic Effluent: Biological sulfate reduction as a co-treatment-option. Journal of Water Process Engineering, 38, 101650. https://doi.org/10.1016/j.jwpe.2020.101650
McMurtrey, M. D., Cui, B., Robertson, I., Farkas, D., and Was, G. S. (2015). Mechanism of dislocation channel-induced irradiation assisted stress corrosion crack initiation in austenitic stainless steel. Current Opinion in Solid State and Materials Science, 19(5), 305-314. https://doi.org/10.1016/j.cossms.2015.04.001
Murthy, P. S., Mohan, T. K., Nanchariah, Y. V., Adhikari, S., Ramadass, G., Gupta, G. V. M., & Murthy, M. R. (2023). Biodiversity of Deep Ocean on development of biofilms: Biofouling communities and corrosion performance of materials. In Advances in Nanotechnology for Marine Antifouling (pp. 141-164). Elsevier. https://doi.org/10.1016/B978-0-323-91762-9.00006-X
Mystkowska, J., Niemirowicz-Laskowska, K., Łysik, D., Tokajuk, G., Dąbrowski, J. R. and Bucki, R. (2018). The role of oral cavity biofilm on metallic biomaterial surface destruction–corrosion and friction aspects. International journal of molecular sciences, 19(3), 743. https://doi.org/10.3390/ijms19030743
Namivandi-Zangeneh, R., Wong, E. H., and Boyer, C. (2021). Synthetic antimicrobial polymers in combination therapy: tackling antibiotic resistance. ACS Infectious Diseases, 7(2), 215-253. https://doi.org/10.1021/acsinfecdis.0c00635
Nanda, M., Kumar, V., and Sharma, D. K. (2019). Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’heavy metal contaminants from water. Aquatic toxicology, 212, 1-10. https://doi.org/10.1016/j.aquatox.2019.04.011
Nazari, M. H., Zhang, Y., Mahmoodi, A., Xu, G., Yu, J., Wu, J., & Shi, X. (2022). Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Progress in Organic Coatings, 162, 106573. https://doi.org/10.1016/j.porgcoat.2021.106573
Neubi, G. M. N., Opoku-Damoah, Y., Gu, X., Han, Y., Zhou, J. and Ding, Y. (2018). Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomaterials science, 6(5), 958-973. https://doi.org/10.1016/j.aquatox.2019.04.011
Nyberg, L. K., Quaderi, S., Emilsson, G., Karami, N., Lagerstedt, E., Müller, V. and Westerlund, F. (2016). Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules. Scientific reports, 6(1), 30410. https://doi.org/https://doi.org/10.1038/srep30410
Ouyang, Y., Zhao, J., Qiu, R., Hu, S., Niu, H., Zhang, Y. and Chen, M. (2020). Nanowall enclosed architecture infused by lubricant: A bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel. Surface and Coatings Technology, 381, 125143. https://doi.org/10.1016/j.surfcoat.2019.125143
Pal, M. K., and Lavanya, M. (2022). Microbial influenced corrosion: understanding bioadhesion and biofilm formation. Journal of Bio-and Tribo-Corrosion, 8(3), 76. https://doi.org/10.1007/s40735-022-00677-x
Passman, F. J., and Küenzi, P. (2020). Microbiology in water-miscible metalworking fluids. Tribology Transactions, 63(6), 1147-1171. https://doi.org/10.1080/10402004.2020.1764684
Permeh, S., Reid, C., Echeverría Boan, M., Lau, K., Tansel, B., Duncan, M., and Lasa, I. (2017, March). Microbiological influenced corrosion (MIC) in Florida marine environment: A case study. In NACE CORROSION (NACE-2017). NACE.
Prasad, A. R., Kunyankandy, A., & Joseph, A. (2020). Corrosion inhibition in oil and gas industry: Economic considerations. Corrosion inhibitors in the oil and gas industry, 135-150. https://doi.org/10.1002/9783527822140.ch5
Procópio, L. (2019). The role of biofilms in the corrosion of steel in marine environments. World Journal of Microbiology and Biotechnology, 35(5), 73. DOIhttps://doi.org/10.1007/s11274-019-2647-4
Qian, Z., Tianwei, H., Mackey, H. R., van Loosdrecht, M. C., & Guanghao, C. (2019). Recent advances in dissimilatory sulfate reduction: from metabolic study to application. Water research, 150, 162-181. https://doi.org/10.1016/j.watres.2018.11.018
Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I. and Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanism and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. https://doi.org/10.1016/j.conbuildmat.2020.121240
Salgar-Chaparro, J., Laiz, L., & Fernández, M. (2020). "Effective Strategies for Mitigating Microbially Induced Corrosion: Bridging the Gap Between Research and Application." Corrosion Engineering Science and Technology, 55(6), 483-495.
Salta, M., Goodes, L. R., Maas, B. J., Dennington, S. P., Secker, T. J. and Leighton, T. G. (2016). Bubbles versus biofilms: a novel method for the removal of marine biofilms attached on antifouling coatings using an ultrasonically activated water stream. Surface Topography: Metrology and Properties, 4(3), 034009. https://doi.org/10.1088/2051-672X/4/3/034009
Singh, A. K., and Singh, A. K. (2020). Industrial cases of microbial induced corrosion. Microbially Induced Corrosion and its Mitigation, 81-106. https://doi.org/10.1007/978-981-15-8019-2_5
Singh, A. K., Singh, A. K., & D'Silva. (2020). microbially induced corrosion and its mitigation. Springer Singapore. https://doi.org/10.1007/s40735-022-00648-2
Singh, V. K., Singh, A. L., Singh, R., and Kumar, A. (2018). Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution. Environmental Sustainability, 1, 221-231. https://doi.org/10.1007/s42398-018-0024-0
Skovhus, T. L., & Eckert, R. B. (2014, March). Practical aspects of MIC detection, monitoring and management in the oil and gas industry. In NACE CORROSION (pp. NACE-2014). NACE. https://doi.org/10.1016/j.jngse.2022.104467
Skovhus, T. L., Eckert, R. B., and Rodrigues, E. (2017). Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study. Journal of biotechnology, 256, 31-45. https://doi.org/10.1016/j.jbiotec.2017.07.003
Song, Y., Tian, Y., Li, X., Wei, J., Zhang, H., Bond, P. L., & Jiang, G. (2019). Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers. Water research, 150, 392-402. https://doi.org/10.1016/j.watres.2018.11.083
Srivastava, R. R., Ilyas, S., Kim, H., Choi, S., Trinh, H. B., Ghauri, M. A., and Ilyas, N. (2020). Biotechnological recycling of critical metals from waste printed circuit boards. Journal of Chemical Technology and Biotechnology, 95(11), 2796-2810. https://doi.org/10.1002/jctb.6469
Talha, M., Ma, Y., Kumar, P., Lin, Y. and Singh, A. (2019). Role of protein adsorption in the bio corrosion of metallic implants–a review. Colloids and Surfaces B: Biointerfaces, 176, 494-506. https://doi.org/10.1016/j.colsurfb.2019.01.038
Telegdi, J., Shaban, A. and Trif, L. (2020). Review on the microbiologically influenced corrosion and the function of biofilms. International Journal of Corrosion and Scale Inhibition, 9(1), 1-33. https://doi.org/10.17675/2305-6894-2020-9-1-1
Tian, F., He, X., Bai, X. and Yuan, C. (2020). Electrochemical corrosion behaviors and mechanism of carbon steel in the presence of acid-producing bacterium Citrobacter farmeri in artificial seawater. International Biodeterioration and Biodegradation, 147, 104872. https://doi.org/10.1016/j.ibiod.2019.104872
Tripathi, A. K., Thakur, P., Saxena, P., Rauniyar, S., Gopalakrishnan, V., Singh, R. N. and Sani, R. K. (2021). Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Frontiers in microbiology, 12, 754140. https://doi.org/10.3389/fmicb.2021.754140
Ukpaka, C., Wami, E. and Amadi, S. (2015). Effect of pollution on metal corrosion: a case study of carbon steel metal in acidic media. Current Science Perspectives, 1(4), 107-111.
Ullah, A., Heng, S., Munis, M. F. H., Fahad, S. and Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environmental and Experimental Botany, 117, 28-40. https://doi.org/10.1016/j.envexpbot.2015.05.001
Wang, A., De Silva, K., Jones, M., Robinson, P., Larribe, G., & Gao, W. (2023). Anticorrosive coating systems for marine propellers. Progress in Organic Coatings, 183, 107768. https://doi.org/10.1016/j.porgcoat.2023.107768
Wu, J., Li, M., Lin, C., Gao, P., Zhang, R., Li, X. and Cai, K. (2022). Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction. Journal of Materials Science and Technology, 109, 209-220. https://doi.org/10.1016/j.jmst.2021.09.006
Wu, M., Wang, T., Wu, K., & Kan, L. (2020). Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Construction and Building Materials, 239, 117813 https://doi.org/10.1016/j.conbuildmat.2019.117813.
Wuni, I. Y. and Shen, G. Q. (2020). Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies. Journal of Cleaner Production, 249, 119347. https://doi.org/10.1016/j.jclepro.2019.119347
Xia, J., Liu, H., Liu, Z. & Li, Y. (2016). Microbiologically influenced corrosion of X80 pipeline steel under disbonded coating in the presence of Desulfovibrio sp. Corrosion Science 112, 49–59. https://doi.org/10.1016/j.corsci.2016.07.020]
Xu, D., Li, Y., and Gu, T. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 110, 52-58. https://doi.org/10.1016/j.bioelechem.2016.03.003
Yan, L., Diao, Y., Lang, Z., & Gao, K. (2020). Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. Science and technology of Advanced Materials, 21(1), 359-370. https://doi.org/10.1080/14686996.2020.1746196
Yazdi, M. (2022). Management of offshore structures under microbiologically influenced corrosion (MIC) (Doctoral dissertation, Memorial University of Newfoundland). http://doi.org/10.48336/EGQ3-4G24
Yazdi, M., Khan, F., Abbassi, R., Quddus, N., & Castaneda-Lopez, H. (2022). A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines. Reliability Engineering & System Safety, 223, 108474. https://doi.org/10.1016/j.ress.2022.108474
Yu, M., Budiyanto, E. and Tüysüz, H. (2022). Principles of water electrolysis and recent progress in cobalt‐, nickel‐, and iron‐based oxides for the oxygen evolution reaction. Angewandte Chemie International Edition, 61(1), e202103824. https://doi.org/10.1002/anie.202103824
Zade, G. S., & Patil, K. D. (2024). Advances in Corrosion‐Resistant Coatings: Types, Formulating Principles, Properties, and Applications. Functional Coatings: Innovations and Challenges, 110-152. https://doi.org/10.1002/9781394207305.ch5
Zhang, Z., Zhang, C., Yang, Y., Zhang, Z., Tang, Y., Su, P. and Lin, Z. (2022). A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. Journal of Cleaner Production, 134109. https://doi.org/10.1016/j.jclepro.2022.134109
Zhu, Y., Wang, H., Li, X., Hu, C., Yang, M., & Qu, J. (2014). Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disk. https://doi.org/10.1016/j.watres.2014.04.035
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sanusi Sani, Aminu Aliyu, Ahamad Ibrahim Bagudo, Adamu Almustapha Aliero, A A Umar, Mujtaba Haruna, M Usman
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.