The Attributes of Biofertilizer as an Alternative to Chemical Fertilizer: A Mini Review
DOI:
https://doi.org/10.56919/usci.2431.023Keywords:
Biofertilizer, Soil, Plant, Fertilitity, Nitrogent FixersAbstract
Traditional soil management relies heavily on inorganic fertilizers, raising environmental and health concerns. A fertile soil requires a precise ratio of inorganic and organic components, with topsoil crucial for plant growth. Essential plant elements include macronutrients (nitrogen, phosphorus, potassium) and micronutrients (zinc, iron). Soil composition must balance minerals, air, water, and living matter. Macronutrients (nitrogen, phosphorus, potassium) are pivotal in plant growth. Potassium influences water regulation, root development, and crop resilience. Phosphorus, crucial for seed development, is essential for legume development. Nitrogen from nitrates, ammonium, and urea is indispensable for protein synthesis and overall plant growth. Biofertilizers, containing active microorganisms, offer an alternative to inorganic fertilizers. They enhance soil fertility, water and nutrient uptake, and plant tolerance to environmental variables. Nitrogen-fixing bacteria, phosphate solubilizing microorganisms (PSM), silicate solubilizing bacteria (SSB), plant growth-promoting rhizobacteria (PGPR), and arbuscular mycorrhizal fungi (AM fungi) are common groups of bacteria that play different specific roles in defining biofertilizer. Bacterial genera such as Rhizobium (a symbiotic nitrogen fixer known for forming nodules on legumes), Azotobacter (a free-living nitrogen fixer known for enhancing sugar content in crops), Azospirillum (a bacterium known for enhancing nitrogen content in non-leguminous plants) and Anabaena-Azollae (a symbiotic relationship between a cyanobacterium and lower plants known in fixing nitrogen and promotes growth in various crops). As agriculture continues to evolve, embracing biofertilizers represents a promising step toward a more sustainable and resilient future.
References
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., and MeftahKadmiri, I. (2021).Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, 628379. https://doi.org/10.3389/fmicb.2021.628379
Abdelaal, A. S., Mosalam, A. M., Youseif, S. H., & Abdelaal, A. S. (2023). Ecosafe Farming with Microbes. Green Chemistry in Agriculture and Food Production, 81. https://doi.org/10.1201/9780429289538-5
Albadarin, A. B., Lewis, T. D., and Walker, G. M. (2017).Granulated polyhalite fertilizer caking propensity. Powder Technology, 308, 193-199. https://doi.org/10.1016/j.powtec.2016.12.004
Al-Suhaibani, N., Selim, M., Alderfasi, A., and El-Hendawy, S. (2020). Comparative performance of integrated nutrient management between composted agricultural wastes, chemical fertilizers, and biofertilizers in improving soil quantitative and qualitative properties and crop yields under arid conditions. Agronomy, 10(10), 1503. https://doi.org/10.3390/agronomy10101503
Barak, (1999). Essential elements for plant's growth, published by Nature publishers.pp. 1- 5.
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., and El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
Bhadrecha, P., Singh, S., & Dwibedi, V. (2023). 'A plant's major strength in rhizosphere': the plant growth promoting rhizobacteria. Archives of Microbiology, 205(5), 1-25. https://doi.org/10.1007/s00203-023-03502-2
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., and Tuteja, N. (2014).Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories, 13, 1-10. https://doi.org/10.1186/1475-2859-13-66
Bhat, T. A., Ahmad, L., Ganai, M. A., and Khan, O. A. (2015). Nitrogen fixing biofertilizers; mechanism and growth promotion: a review. Journal of Pure Applied Microbiology, 9(2), 1675-1690.
Bhatla, S. C., A. Lal, M., Kathpalia, R., and Bhatla, S. C. (2018). Plant mineral nutrition. Plant physiology, development and metabolism, 37-81. https://doi.org/10.1007/978-981-13-2023-1_2
Bhattacharjee, R. B., Singh, A., and Mukhopadhyay, S. N. (2008). Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Applied microbiology and biotechnology, 80, 199-209. https://doi.org/10.1007/s00253-008-1567-2
Byrnes, B. H. (1990). Environmental effects of N fertilizer use-An overview. Fertilizer research, 26, 209-215. https://doi.org/10.1007/BF01048758
Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification?. Plant and soil, 302, 1-17. https://doi.org/10.1007/s11104-007-9466-3
Chittapun, S., Limbipichai, S., Amnuaysin, N., Boonkerd, R., and Charoensook, M. (2018). Effects of using cyanobacteria and fertilizer on growth and yield of rice, PathumThani I: a pot experiment. Journal of Applied Phycology, 30, 79-85. https://doi.org/10.1007/s10811-017-1138-y
Das, A., Rani, K., Behera, B., Trivedi, A., & Yadav, D. K. (2022). Agriculture Letters. Agriculture Letters.
Davidson, E. A., David, M. B., Galloway, J. N., Goodale, C. L., Haeuber, R., Harrison, J. A. and Snyder, C. S. (2012). Excess nitrogen in the US environment: trends, risks, and solutions. Issues in ecology, (15).
Debnath, S., Rawat, D., Mukherjee, A. K., Adhikary, S., and Kundu, R. (2019). Applications and constraints of plant beneficial microorganisms in agriculture. In Biostimulants in plant science.IntechOpen. https://doi.org/10.5772/intechopen.89190
Dent, D. and Cocking, E. (2017).Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agriculture and Food Security, 6(1), 1-9. https://doi.org/10.1186/s40066-016-0084-2
Dubey, R. K., Vishal Tripathi, V. T., Edrisi, S. A., MansiBakshi, M. B., Dubey, P. K., Ajeet Singh, A. S. and Abhilash, P. C. (2017). Role of plant growth-promoting microorganisms in sustainable agriculture and environmental remediation. In Advances in PGPR research (pp. 75-125). Wallingford UK: CABI. https://doi.org/10.1079/9781786390325.0075
Edwards, D. G. (1977). Nutritional factors limiting nitrogen fixed by rhizobia. Carbon, 45000, 45.
Ehrlich, P. R., and Ehrlich, A. H. (1996). Betrayal of science and reason: How anti-environmental rhetoric threatens our future. Island Press.
Essa, A. M., Ibrahim, W. M., Mahmud, R. M., and ElKassim, N. A. (2015). Potential impact of cyanobacterial exudates on seed germination and antioxidant enzymes of crop plant seedlings. Int J Curr Microbiol App Sci, 4(6), 1010-24.
Fabiyi, E. F., Danladi, B. B., Akande, K. E., and Mahmood, Y. (2007). Role of women in agricultural development and their constraints: a case study of Biliri Local Government Area, Gombe State, Nigeria. https://doi.org/10.3923/pjn.2007.676.680
Giri, B., Prasad, R., Wu, Q. S., and Varma, A. (Eds.).(2019). Biofertilizers for sustainable agriculture and environment. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-18933-4
Giri, B., Prasad, R., Wu, Q. S., and Varma, A. (Eds.).(2019).Biofertilizers for sustainable agriculture and environment. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-18933-4
Ifokwe, N.J. (1988). Studies on the production of biological fertilizer from domestic wastes and Azollapinata(Singh).Unpublished M.Sc. Thesis, Department of Plant Science and Technology, University of Jos. pp. 10 - 45.
Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., and Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review.
Kaushik, B. D. (2014). Developments in Cyanobacterial biofertilizer. In Proc Indian Nat Sci Acad (Vol. 80, No. 2, pp. 379-388). https://doi.org/10.16943/ptinsa/2014/v80i2/55115
Krishnaprabu, S. (2020). Liquid microbial consortium: A potential tool for sustainable soil health. Journal of Pharmacognosy and Phytochemistry, 9(2), 2191-2199. https://doi.org/10.22271/phyto.2020.v9.i2aj.11182
Kumar, R., Kumar, R., and Prakash, O. (2019). Chapter-5 the impact of chemical fertilizers on our environment and ecosystem. Chief Ed, 35, 69.
Kumar, R., Kumawat, N., and Sahu, Y. K. (2017). Role of biofertilizers in agriculture. Popular kheti, 5(4), 63-66.
Mabrouk, Y., Hemissi, I., Salem, I. B., Mejri, S., Saidi, M., and Belhadj, O. (2018). Potential of rhizobia in improving nitrogen fixation and yields of legumes. Symbiosis, 107(73495), 1-16. https://doi.org/10.5772/intechopen.73495
Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Tripathi, Y. N., Zehra, A. and Upadhyay, R. S. (2020). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 60(10), 828-861. https://doi.org/10.1002/jobm.202000370
Mfilinge A, Mtei K, Ndakidemi P (2014). Effect of Rhizobium inoculation and supplementation with phosphorus and potassium on growth, leaf chlorophyll content and nitrogen fixation of bush bean varieties. American Journal of Research Communication, 2 (10): 49 - 57.
Mia, M. B., and Shamsuddin, Z. H. (2010).Rhizobium as a crop enhancer and biofertilizer for increased cereal production. African journal of Biotechnology, 9(37), 6001-6009.
Mohammadi, K., and Sohrabi, Y. (2012). Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci, 7(5), 307-316.
NN, T., and Malam, K. V. (2020). Azolla (Aquatic Fern) as Bio Fertilizer (Eco-Friendly Agriculture). agrinenv. com, 29.
Nosheen, S., Ajmal, I., and Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13(4), 1868. https://doi.org/10.3390/su13041868
Perotto, S., and Martino, E. (2001). Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation?. Minerva Biotecnologica, 13(1), 55.
Purves, W.K., Sadava, D., Orian, G.H., Graig-Heller, H. (2000). Life.The Science of Biology. Sixth edition, published by Sinauer AssociatesInc. pp. 372 - 378.
Rahimi, A., SiavashMoghaddam, S., Ghiyasi, M., Heydarzadeh, S., Ghazizadeh, K., and Popović-Djordjević, J. (2019). The influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian Cephalaria (Cephalariasyriaca L.). Agriculture, 9(6), 122. https://doi.org/10.3390/agriculture9060122
Sahoo, R. K., Bhardwaj, D., and Tuteja, N. (2012). Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In Plant acclimation to environmental stress (pp. 403-432). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-5001-6_15
Saikia, S. P., Bora, D., Goswami, A., Mudoi, K. D., and Gogoi, A. (2012). A review on the role of Azospirillum in the yield improvement of non leguminous crops. African Journal of Microbiology Research, 6(6), 1085-1102. https://doi.org/10.5897/AJMRX11.019
Sathyanarayana, E., Patil, S., and Chawla, S. L. (2017). A Review-Bio-fertilizers Role and Use in Flower Crops. Trends in Biosciences, 10(20), 3734-3736.
Scalenghe, R., Edward, A.C., Barberis, E., Ajimone-Marson, F. (2012). Agricultural soil under a continental temperature climate susceptible to episodic reducing conditions and increased leaching of phosphorus. Journal of Management, (97): 141 - 147. https://doi.org/10.1016/j.jenvman.2011.11.015
Shaviv, A., and Mikkelsen, R. L. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review. Fertilizer research, 35, 1-12. https://doi.org/10.1007/BF00750215
Sivasakthi, S., Usharani, G., and Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. African journal of agricultural research, 9(16), 1265-1277.
Sivasakthivelan, P., and Saranraj, P. (2013).Azospirillum and its formulations: a review. International Journal of Microbiological Research, 4(3), 275-287.
Stambulska, U. Y., Bayliak, M. M., and Lushchak, V. I. (2018). Chromium (VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. BioMed research international, 2018. https://doi.org/10.1155/2018/8031213
Swathi, K., Sarkar, I., Maitra, S., & Sharma, S. (2017). Organic Manures and Bio-inoculants Mediated Influence on growth and Flowering of African Marigold (Tagetes erecta L.) cv. Pusa Narangi Gainda. International Journal of Bio-resource and Stress Management, 8(3), 429-432. https://doi.org/10.23910/IJBSM/2017.8.3.1690a
Thomas, L., and Singh, I. (2019). Microbial biofertilizers: types and applications. Biofertilizers for sustainable agriculture and environment, 1-19. https://doi.org/10.1007/978-3-030-18933-4_1
Verma, A., Verma, S., Singh, M., Mudila, H., & Saini, J. K. (2023). Ecology and Mechanisms of Plant Growth Promoting Rhizobacteria. In Sustainable Agriculture Reviews 60: Microbial Processes in Agriculture (pp. 69-93). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-24181-9_4
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255, 571-586. https://doi.org/10.1023/A:1026037216893
Vink, A. P. (2013). Land use in advancing agriculture (Vol. 1). Springer Science and Business Media.
Watts, M. J. (2013). Silent violence: Food, famine, and peasantry in northern Nigeria (Vol. 15). University of Georgia Press.
Zaidi, A., Khan, M. S., Ahemad, M., Oves, M., and Wani, P. A. (2009). Recent advances in plant growth promotion by phosphate-solubilizing microbes. Microbial strategies for crop improvement, 23-50. https://doi.org/10.1007/978-3-642-01979-1_2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.