Mechanisms of Bacterial Resistance to Heavy Metals: A Mini Review

Authors

DOI:

https://doi.org/10.56919/usci.2123.010

Keywords:

Heavy metals, Bacteria, Resistance mechanisms, Bioremediation

Abstract

Because of rising levels of heavy metal pollution in the environment, microbial resistance to heavy metals has become an increasing concern. Heavy metal resistance in bacteria is typically achieved through a combination of passive and active mechanisms, including heavy metal sequestration, efflux, or transformation within the microbial cell. During the efflux mechanism, a membrane protein's energy-dependent ion efflux from the cell is necessary for heavy metal removal. Understanding the physicochemical parameters of the environment, structure and diversity of microbial communities, nature and concentration of heavy metals is critical for developing effective strategies for the remediation of heavy metal-contaminated sites. Many microbes play a significant part on functioning ecosystem more especially in the biogeochemical cycling of heavy metals by removing the metals from the environment. As, Pb, Cd, and Hg are among heavy metals that are associated with the most common ecologically hazardous metals that can be toxic to microbes and still nature has evolved few groups of microbes that were found to resist the effect of heavy metals while thriving within their ecosystem such as Pseudomonas sp., Escherichia coli and Serratia marcescens that can resist Hg. Pseudomonas putida, Cupriavidus necator, Exiguobacterium sp., Bacillus aquimaris, Bacillus cereus and Alcaligenes sp. can also resist Cu, Cd, Pb, Cr and Ni. The exposure of local and regional soil with heavy metal pollution due to smelting causes which poses major environmental issues that is currently on rise in human ecosystem. Therefore, studying the mechanisms of bacterial resistance to heavy metal is critical for developing strategies to reduce the environmental impact of heavy metal pollution.

Author Biographies

Aminu Yusuf Fardami, Department of Microbiology, Faculty of Chemical and Life Science, UsmanuDanfodio University Sokoto, Sokoto State-Nigeria

 

 

Umar Balarabe Ibrahim, Department of Microbiology, Faculty of Chemical and Life Science, UsmanuDanfodio University Sokoto, Sokoto State-Nigeria

 

 

Muntasir Sabitu, Department of Microbiology, Faculty of Chemical and Life Science, UsmanuDanfodio University Sokoto, Sokoto State-Nigeria

 

 

Abduljalil Lawal, Department of Microbiology, Faculty of Chemical and Life Sciences, Usmanu Danfodiyo University Sokoto, Nigeria

 

 

Mahdi Ahmad Adamu , Department of Microbiology, Sokoto Specialist Hospital, Sokoto State-Nigeria

 

 

Aminu Aliyu, Department of Microbiology, Federal University Gusau, Zamfara State, Nigeria

 

 

Ibrahim Lawal, Department of Microbiology, Al-Qalam University Katsina, Katsina State, Nigeria

 

 

Abdullahi Ibrahim Dalhatu, Department of Microbiology, Al-Qalam University Katsina, Katsina State, Nigeria

 

 

Muhammad Sanusi Zainab, Department of Microbiology, Faculty of Chemical and Life Science, Usmanu Danfodio University Sokoto, Sokoto State-Nigeria

 

 

Ahmadu Ali Farouq, Department of Microbiology, Faculty of Chemical and Life Science, Usmanu Danfodio University Sokoto, Sokoto State-Nigeria

 

 

References

Ahmed, E., & Holmström, S. J. (2014). Siderophores in environmental research: roles and applications. Microbial biotechnology. 7(3): 196-208. https://doi.org/10.1111/1751-7915.12117

Ajiboye, T. O., Oyewo, O. A., & Onwudiwe, D. C. (2021). Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere. 262: 128379.

https://doi.org/10.1016/j.chemosphere.2020.128379 Akhtar, N., SyakirIshak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water. 13(19): 2660. https://doi.org/10.3390/w13192660

Ali, M., Song, X., Ding, D., Wang, Q., Zhang, Z., & Tang,

Z. (2022). Bioremediation of PAHs and heavy metals co-contaminated soils: challenges and enhancement strategies. Environmental Pollution. 295: 118686. https://doi.org/10.1016/j.envpol.2021.118686

Alotaibi, B. S., Khan, M., &Shamim, S. (2021).Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms. 9(8): 1628.

https://doi.org/10.3390/microorganisms9081628

Altimira, F., Yáñez, C., Bravo, G., González, M., Rojas, L. A., & Seeger, M. (2012). Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC microbiology. 12(1): 1-

https://doi.org/10.1186/1471-2180-12-193

Alvarez, A., Saez, J. M., Costa, J. S. D., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., ... & Amoroso, M.

J. (2017). Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 166: 41-62.

https://doi.org/10.1016/j.chemosphere.2016.09.070

Aslam, B., Majeed, W., Sindhu, Z. U. D., & Faisal, M. N. (2023). Dietary toxicity of heavy metals; one health perspective In: Abbas RZ, Saeed NM, Younus M, Aguilar-Marcelino L and Khan A (eds), One Health Triad.

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1): 94. https://doi.org/10.3390/ijerph14010094

Ayangbenro, A. S., & Babalola, O. O. (2020).Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Scientific Reports. 10(1): 1-12.

https://doi.org/10.1038/s41598-020-75170-x

Bhat, S. A., Hassan, T., & Majid, S. (2019). Heavy metal toxicity and their harmful effects on living organisms-a review. International Journal of Medical Science and Diagnosis Research. 3(1): 106-122.

Biswas, R., Halder, U., Kabiraj, A., Mondal, A., & Bandopadhyay, R. (2021).Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Archives of Microbiology. 203: 2761-2770.

https://doi.org/10.1007/s00203-021-02275-w

Charkiewicz, A. E., & Backstrand, J. R. (2020). Lead toxicity and pollution in Poland. International Journal of Environmental Research and Public Health. 17(12): 4385.

https://doi.org/10.3390/ijerph17124385

Dweba, C. C., Zishiri, O. T., & El Zowalaty, M. E. (2018). Methicillin-resistant Staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infection and Drug Resistance. 11: 2497.

https://doi.org/10.2147/IDR.S175967

Fardami, A. Y., Kawo, A. H., Yahaya, S., Riskuwa-Shehu,

M. L., Lawal, I., & Ismail, H. Y. (2022). Isolation and Screening of Biosurfactant-producing Bacteria from Hydrocarbon-contaminated Soil in Kano Metropolis, Nigeria. Journal of Biochemistry, Microbiology and Biotechnology. 10(1): 52-57.

https://doi.org/10.54987/jobimb.v10i1.664

Farhan, A., Zulfiqar, M., Rashid, E. U., Nawaz, S., Iqbal,

H. M., Jesionowski, T. & Zdarta, J. (2023). Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Current Pollution Reports. 1-21.

Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J., & Blaskovich, M. A. (2023). Metals to combat antimicrobial resistance. Nature Reviews Chemistry. 1-23.

https://doi.org/10.1038/s41570-023-00463-4

Gautam, K., Sharma, P., Dwivedi, S., Singh, A., Gaur, V. K., Varjani, S. & Ngo, H. H. (2023). A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. Environmental Research. 115: 592.

https://doi.org/10.1016/j.envres.2023.115592

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health. 17(11): 3782.

https://doi.org/10.3390/ijerph17113782

Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V., & Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16: 1807- 1828.

https://doi.org/10.1007/s13762-019-02215-8

Grabias-Blicharz, E., & Franus, W. (2023). A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Science of the Total Environment. 860: 160529.

https://doi.org/10.1016/j.scitotenv.2022.160529

Guo, K., Zhao, Y., Cui, L., Cao, Z., Zhang, F., Wang, X. and Dai, M. (2021). The influencing factors of bacterial resistance related to livestock farm: sources and mechanisms. Frontiers in Animal Science. 2: 650347.

https://doi.org/10.3389/fanim.2021.650347

Hamzah, A., Wong, K. K., Hasan, F. N., Mustafa, S.,

Khoo, K. S., & Sarmani, S. B. (2013). Determination of total arsenic in soil and arsenic- resistant bacteria from selected ground water in Kandal Province, Cambodia. Journal of Radioanalytical and Nuclear Chemistry. 297: 291-296.

https://doi.org/10.1007/s10967-012-2388-4

Hao, X., Zhu, J., Rensing, C., Liu, Y., Gao, S., Chen, W. & Liu, Y. R. (2021). Recent advances in exploring the heavy metal (loid) resistant microbiome. Computational and Structural Biotechnology Journal. 19: 94-109.

https://doi.org/10.1016/j.csbj.2020.12.006

Huang, H., Huang, D., Chen, S., Wang, G., Chen, Y., TAO, J. & Gao, L. (2022). Removing antibiotic resistance genes under heavy metal stress with carbon-based materials and clay minerals: by sorption alone?. Chemical Engineering Journal. 137121. https://doi.org/10.1016/j.cej.2022.137121

Hussain, I., Aleti, G., Naidu, R., Puschenreiter, M., Mahmood, Q., Rahman, M. M., ...&Reichenauer,

T. G. (2018). Microbe and plant assisted- remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Science of the Total Environment. 628: 1582-1599.

https://doi.org/10.1016/j.scitotenv.2018.02.037

Ibrahim, U. B., Yahaya, S., Yusuf, I., & Kawo, A. H. (2022). Optimization and simulation of process parameters in biosorption of heavy metals by Alcaligenes Faecalis strain UBI (MT107249) isolated from soil of local mining area in North- West Nigeria. Soil and Sediment Contamination: An International Journal. 31(4): 438-455.

https://doi.org/10.1080/15320383.2021.1963211

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., &Beeregowda, K. N. (2014).Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology. 7(2): 60.

https://doi.org/10.2478/intox-2014-0009

Jamla, M., Khare, T., Joshi, S., Patil, S., Penna, S., & Kumar, V. (2021).Omics approaches for understanding heavy metal responses and tolerance in plants. Current Plant Biology, 27, 100213. https://doi.org/10.1016/j.cpb.2021.100213

Jyothi, N. R. (2020). Heavy metal sources and their effects on human health. Heavy Metals-Their Environmental Impacts and Mitigation.

Kanekar, P. P., & Kanekar, S. P. (2022). Metallophilic, Metal-Resistant, and Metal-Tolerant Microorganisms. In Diversity and Biotechnology of Extremophilic Microorganisms from India (pp. 187-213). Singapore: Springer Nature Singapore.

https://doi.org/10.1007/978-981-19-1573-4_6

Kayiranga, A., Li, Z., Isabwe, A., Ke, X., Simbi, C. H., Ifon, B. E. & Sun, X. (2023). The Effects of Heavy Metal Pollution on Collembola in Urban Soils and Associated Recovery Using Biochar Remediation: A Review. International Journal of Environmental Research and Public Health. 20 (4), 3077.

https://doi.org/10.3390/ijerph20043077

Khan, A., Singh, P., &Srivastava, A. (2018). Synthesis, nature and utility of universal iron chelator- Siderophore: A review. Microbiological Research. 212: 103-111.

https://doi.org/10.1016/j.micres.2017.10.012

Kim, K. H., Kabir, E., &Jahan, S. A. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of Hazardous Materials. 306: 376-385.

https://doi.org/10.1016/j.jhazmat.2015.11.031

Kishore, S., Malik, S., & Kumari, M. (2023). Heavy metals in the environment: toxicity to microbial remediation. In Emerging Technologies in Applied and Environmental Microbiology (pp. 181-203). Academic Press.

https://doi.org/10.1016/B978-0-323-99895-6.00006-X

Koller, M., &Saleh, H. M. (2018). Introductory chapter: Introducing heavy metals. Heavy metals, 1: 3-11. https://doi.org/10.5772/intechopen.74783

Kosakivska, I. V., Babenko, L. M., Romanenko, K. O., Korotka, I. Y., & Potters, G. (2021). Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biology International. 45(2): 258- https://doi.org/10.1002/cbin.11503

Kumar, A., Song, H. W., Mishra, S., Zhang, W., Zhang, Y. L., Zhang, Q. R., & Yu, Z. G. (2023). Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Chemosphere. 137894.

https://doi.org/10.1016/J.CHEMOSPHERE.2023.137894 Kumari, S., Sharma, S., Advani, D., Khosla, A., Kumar, P., &Ambasta, R. K. (2021).Unboxing the molecular modalities of mutagens in cancer. Environmental Science and Pollution Research. 1-49. https://doi.org/10.1007/s11356-021-16726-w

Lawal, I., Fardami, A. Y., Bello, S., Habibu, A. & Sanusi,

Z. M. (2022). The Potentials of Biosurfactants as Anti-Inflammatory and Anti-Viral Agents Against Covid-19: A Mini Review. UMYU Scientifica. 1(2), 138-142. https://doi.org/10.56919/usci.1222.019

Li, J., & Song, N. (2020).Graphene oxide-induced variations in the processing performance, microbial community dynamics and heavy metal speciation during pig manure composting. Process Safety and Environmental Protection. 136: 214-222. https://doi.org/10.1016/j.psep.2020.01.028

Li, Z., Junaid, M., Chen, G., & Wang, J. (2022). Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Reviews in Aquaculture. 14(2): 1028-1045. https://doi.org/10.1111/raq.12639

Liang, D., Song, J., Xia, J., Chang, J., Kong, F., Sun, H. & Zhang, Y. (2022). Effects of heavy metals and hyporheic exchange on microbial community structure and functions in hyporheic zone. Journal of Environmental Management., 303: 114201.

https://doi.org/10.1016/j.jenvman.2021.114201

Longhi, C., Maurizi, L., Conte, A. L., Marazzato, M., Comanducci, A., Nicoletti, M., & Zagaglia, C. (2022). Extraintestinal Pathogenic Escherichia coli: Beta-Lactam Antibiotic and Heavy Metal Resistance. Antibiotics. 11(3): 328.

https://doi.org/10.3390/antibiotics11030328

Luo, X., Wu, C., Lin, Y., Li, W., Deng, M., Tan, J., & Xue,S. (2023). Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. Journal of Environmental Sciences. 125: 662-677.

https://doi.org/10.1016/j.jes.2022.01.029

Mahto, K. U., Kumari, S., & Das, S. (2022). Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Critical Reviews in Biochemistry and Molecular Biology. 57(3): 305-332.

https://doi.org/10.1080/10409238.2021.2015747

Manoj, S. R., Karthik, C., Kadirvelu, K., Arulselvi, P. I., Shanmugasundaram, T., Bruno, B., & Rajkumar,M. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management. 254: 109779) https://doi.org/10.1016/j.jenvman.2019.109779

Matta, G., &Gjyli, L. (2016). Mercury, lead and arsenic: impact on environment and human health. J Chem Pharm Sci. 9(2): 718-725

MedfuTarekegn, M., ZewduSalilih, F., &Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture. 6(1): 1783174. https://doi.org/10.1080/23311932.2020.1783174

MedfuTarekegn, M., ZewduSalilih, F., &Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture. 6(1), 1783174.

https://doi.org/10.1080/23311932.2020.1783174

Mohammed, A. S., Kapri, A., &Goel, R. (2011). Heavy metal pollution: source, impact, and remedies. Biomanagement of metal-contaminated soils. 1-28.

https://doi.org/10.1007/978-94-007-1914-9_1

Mondal, S., Mukherjee, S. K., & Hossain, S. T. (2023). Exploration of Plant Growth Promoting Rhizobacteria (PGPRs) for Heavy Metal Bioremediation and Environmental Sustainability: Recent Advances and Future Prospects. Modern Approaches in Waste Bioremediation: Environmental Microbiology. 29-55.

https://doi.org/10.1007/978-3-031-24086-7_3

Nanda, M., Kumar, V., & Sharma, D. K. (2019).Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to 'clean-up'heavy metal contaminants from water. Aquatic toxicology. 212, 1-10.

https://doi.org/10.1016/j.aquatox.2019.04.011

Nosalova, L., Willner, J., Fornalczyk, A., Saternus, M., Sedlakova-Kadukova, J., Piknova, M., & Pristas,P. (2023). Diversity, heavy metals, and antibiotic resistance in culturable heterotrophic bacteria isolated from former lead-silver-zinc mine heap in Tarnowskie Gory (Silesia, Poland). Archives of Microbiology. 205(1): 26.

https://doi.org/10.1007/s00203-022-03369-9

Ojuederie, O. B., &Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health. 14(12): 1504.

https://doi.org/10.3390/ijerph14121504

Pal, A., Bhattacharjee, S., Saha, J., Sarkar, M., &Mandal, P. (2022). Bacterial survival strategies and responses under heavy metal stress: A comprehensive overview. Critical Reviews in Microbiology. 48(3), 327-355.

https://doi.org/10.1080/1040841X.2021.1970512

Patel, A. K., Singhania, R. R., Albarico, F. P. J. B., Pandey, A., Chen, C. W., & Dong, C. D. (2022). Organic wastes bioremediation and its changing prospects. Science of the Total Environment. 153889. https://doi.org/10.1016/j.scitotenv.2022.153889

Prabhakaran, P., Ashraf, M. A., & Aqma, W. S. (2016). Microbial stress response to heavy metals in the environment. Rsc Advances. 6(111), 109862-

https://doi.org/10.1039/C6RA10966G

Prasad, S., Malav, L. C., Choudhary, J., Kannojiya, S., Kundu, M., Kumar, S., &Yadav, A. N. (2021). Soil microbiomes for healthy nutrient recycling. Current Trends in Microbial Biotechnology for Sustainable Agriculture. 1-21.

https://doi.org/10.1007/978-981-15-6949-4_1

Priya, A. K., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D., & Soto-Moscoso, M. (2022). Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere. 307, 135957. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135957 Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment. 191, 1-21.

https://doi.org/10.1007/s10661-019-7528-7

Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K.H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International. 125, 365-385.

https://doi.org/10.1016/j.envint.2019.01.067

Raklami, A., Meddich, A., Oufdou, K., & Baslam, M. (2022). Plants-microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Sciences. 23(9): 5031.

https://doi.org/10.3390/ijms23095031

Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim,H. S. (2016). Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnology Advances. 34(1), 14-29.

https://doi.org/10.1016/j.biotechadv.2015.12.003

Riyazuddin, R., Nisha, N., Ejaz, B., Khan, M. I. R., Kumar,M., Ramteke, P. W., & Gupta, R. (2022).A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 12(1), 43. https://doi.org/10.3390/biom12010043

Roskova, Z., Skarohlid, R., & McGachy, L. (2022). Siderophores: an alternative bioremediation strategy?. Science of The Total Environment, 153144.

https://doi.org/10.1016/j.scitotenv.2022.153144

Roy, D., Paul, S., Basu, M., & Mitra, A. K. (2023). Removal of heavy metal pollutant from electroplating industry through bioaugmentation. Microbial Degradation and Detoxification of Pollutants. 2: 159.

https://doi.org/10.1515/9783110743623-008

Saha, B. N., Roy, S., & Rakshit, R. (2022). Managing Abiotic Stressed Agriculture through Microbes. In Soil Management For Sustainable Agriculture (pp. 123-141). Apple Academic Press.

https://doi.org/10.1201/9781003184881-7

Saravanan, A., Kumar, P. S., Ramesh, B., & Srinivasan, S. (2022). Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies. Chemosphere. 134-341.

https://doi.org/10.1016/J.CHEMOSPHERE.2022.134341 Seneviratne, M., Seneviratne, G., Madawala, H. M. S. P., & Vithanage, M. (2017). Role of rhizospheric microbes in heavy metal uptake by plants. Agro- Environmental Sustainability: Volume 2: Managing Environmental Pollution. 147-163. https://doi.org/10.1007/978-3-319-49727-3_8

Shah, V., & Daverey, A. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation. 18, 100774.

https://doi.org/10.1016/j.eti.2020.100774

Shahnawaz, M., Sangale, M. K., & Ade, A. B. (2019). Microplastics. Bioremediation Technology for Plastic Waste. 11-19.

https://doi.org/10.1007/978-981-13-7492-0_2

Shamim, S. (2018). Biosorption of Heavy Metals, Intech Open Publication. DOI: 10.5772/intechopen.72099

https://doi.org/10.5772/intechopen.72099

Sharma, P., Pandey, A. K., Udayan, A., & Kumar, S. (2021). Role of microbial community and metal- binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresource Technology, 326, 124750.

https://doi.org/10.1016/j.biortech.2021.124750

Singh, S., Paswan, S. K., Kumar, P., Singh, R. K., & Kumar, L. (2023). Heavy metal water pollution: an overview about remediation, removal and recovery of metals from contaminated water. Metals in Water, 263-284.

https://doi.org/10.1016/B978-0-323-95919-3.00018-5

Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. Nano Bio Science, 10(2): 2148-2166.

https://doi.org/10.33263/LIANBS102.21482166

Su, C., Geng, Y., Zeng, X., Gao, Z., & Song, X. (2023).Uncovering the features of nickel flows in China. Resources, Conservation and Recycling, 188: 106702. https://doi.org/10.1016/j.resconrec.2022.106702

Tabelin, C. B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E. M., Ito, M., &Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 645, 1522-1553.

https://doi.org/10.1016/j.scitotenv.2018.07.103

Tarfeen, N., Nisa, K. U., Hamid, B., Bashir, Z., Yatoo, A.M., Dar, M. A., ...&Sayyed, R. Z. (2022).Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes, 10(7), 1358.

https://doi.org/10.3390/pr10071358

Vareda, J. P., Valente, A. J., &Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of environmental management, 246, 101-118.

https://doi.org/10.1016/j.jenvman.2019.05.126

Velusamy, P., Awad, Y. M., Abd El-Azeem, S. A. M., & Ok, Y. S. (2011). Screening of heavy metal resistant bacteria isolated from hydrocarbon contaminated soil in Korea. J Agric Life Environ Sci, 23(1): 40-43

Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021). A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. The Chemical Record, 21(7), 1570-1610. https://doi.org/10.1002/tcr.202000153

Wang, X., Lan, B., Fei, H., Wang, S., & Zhu, G. (2021).Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Journal of Hazardous Materials, 411, 124848.

https://doi.org/10.1016/j.jhazmat.2020.124848

Wang, Y., Bai, Y., Su, J., Ali, A., Gao, Z., Huang, T. & Ren,M. (2023). Advances in microbially mediated manganese redox cycling coupled with nitrogen removal in wastewater treatment: A critical review and bibliometric analysis. Chemical Engineering Journal, 461, 141878.

https://doi.org/10.1016/j.cej.2023.141878

Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Ok, Y. S., Zhang, W. & Dong, Z. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment international, 125, 478-488.

https://doi.org/10.1016/j.envint.2019.01.071

Yin, K., Wang, Q., Lv, M., & Chen, L. (2019).Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553-1563.

https://doi.org/10.1016/j.cej.2018.10.226

Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657.

https://doi.org/10.1016/j.cej.2020.125657

Zhang, Q., Achal, V., Xiang, W. N., & Wang, D. (2014). Identification of Heavy Metal Resistant Bacteria Isolated from Yangtze River, China. International Journal of Agriculture & Biology, 16 (3). Zhu, X., Lv, B., Shang, X., Wang, J., Li, M., & Yu, X. (2019). The immobilization effects on Pb, Cd and Cu by the inoculation of organic phosphorus- degrading bacteria (OPDB) with rapeseed dregs in acidic soil. Geoderma, 350, 1-10.

https://doi.org/10.1016/j.geoderma.2019.04.015

Downloads

Published

2023-03-30

How to Cite

Yusuf Fardami, A., Balarabe Ibrahim, U., Sabitu, M., Lawal, A., Ahmad Adamu , M., Aliyu, A., Lawal, I., Ibrahim Dalhatu, A., Sanusi Zainab, M., & Farouq, A. A. (2023). Mechanisms of Bacterial Resistance to Heavy Metals: A Mini Review. UMYU Scientifica, 2(1), 76–87. https://doi.org/10.56919/usci.2123.010

Most read articles by the same author(s)