Microbes Associated with Bioremediation of Microplastic Waste in Nigerian Freshwater Bodies: A Review
DOI:
https://doi.org/10.56919/usci.2123.017Keywords:
Microplastic,, Fresh water bodies,, bacteria,, fungi,, ecosystemAbstract
Microplastic pollution in freshwater bodies is a serious environmental issue affecting agriculture, human consumption, and ecological well-being. Microbial bioremediation is a promising method for removing microplastic waste. Bacterial and fungal species have shown efficiency in breaking down microplastic either aerobically or anaerobically. The alphaproteobacteria class, particularly the Rhodobacteraceae family, and the gammaproteobacteria family were home to the majority of bacteria that could break down microplastic. Several researchers investigated the Rhodococcus genus and the genera Pseudomonas sp. with noteworthy outcomes. Fungal phyla of Ascomycota (Dothideomycetes, Eurotiomycetes, Leotiomycetes, Saccharomycetes, and Sordariomycetes), Basidiomycota (Agaricomycetes, Microbotryomycetes, Tremellomycetes, Tritirachiomycetes, and Ustilaginomycetes), and Mucoromycota (Mucoromycetes) were found efficient in the degradation of microplastic in both land and fresh water bodies. It is important to take action to lessen the amount of plastic garbage that enters freshwater bodies, as well as to improve waste management procedures and encourage sustainable plastic usage patterns in Nigeria.
References
Aderonke, T. O., Olukayode, O. A., & Moyinoluwa, A. J. (2019). Microplastics in Lagos Lagoon: a preliminary investigation of abundance, distribution and composition. Journal of Environmental Science and Health, Part A, 54(14), 1332-1339.
Adeyemo, O. K., Adedapo, A. E., & Olawoye, S. O. (2021). Microplastic pollution in the environment: sources, fate, effect, and possible solutions. Environmental Science and Pollution Research, 28(13), 16050-16065.
Akhmad, N., & Fauziah, S. H. (2020). Occurrence and distribution of microplastics in River Niger, Nigeria. Marine Pollution Bulletin, 155, 111122.
Akindele, E. O., Ehlers, S. M., & Koop, J. H. (2019). First empirical study of freshwater microplastics in West Africa using gastropods from Nigeria as bioindicators. Limnologica, 78, 125708. https://doi.org/10.1016/j.limno.2019.125708
Akindele, E. O., Ehlers, S. M., & Koop, J. H. (2019). First empirical study of freshwater microplastics in West Africa using gastropods from Nigeria as bioindicators. Limnologica, 78, 125708. https://doi.org/10.1016/j.limno.2019.125708
Akindele, E. O., Ehlers, S. M., & Koop, J. H. (2020). Freshwater insects of different feeding guilds ingest microplastics in two Gulf of Guinea tributaries in Nigeria. Environmental Science and Pollution Research, 27, 33373-33379. https://doi.org/10.1007/s11356-020-08763-8
Alimi, O. S., Fadare, O. O., & Okoffo, E. D. (2021). Microplastics in African ecosystems: Current knowledge, abundance, associated contaminants, techniques, and research needs. Science of the Total Environment, 755, 142422. https://doi.org/10.1016/j.scitotenv.2020.142422
Aragaw, T. A. (2021). Microplastic pollution in African countries' water systems: a review on findings, applied methods, characteristics, impacts, and managements. SN Applied Sciences, 3(6), 629. https://doi.org/10.1007/s42452-021-04619-z
Azeem, M., Sun, T. R., Jeyasundar, P. G. S. A., Han, R. X., Li, H., Abdelrahman, H., ... & Li, G. (2023). Biochar-derived dissolved organic matter (BDOM) and its influence on soil microbial community composition, function, and activity: A review. Critical Reviews in Environmental Science and Technology, 1-23. https://doi.org/10.1080/10643389.2023.2190333
Azfaralariff, A., Mat Lazim, A., Amran, N. H., Mukhtar, N. H., Bakri, N. D., Azrihan, N. N., & Mohamad, M. (2023). Mini review of microplastic pollutions and its impact on the environment and human health. Waste Management & Research, 0734242X231155395. https://doi.org/10.1177/0734242X231155395
Bencheikh, I., Azoulay, K., Ben Baaziz, M., & Mabrouki, J. (2023). Ecological Risks Related to the Influence of Different Environmental Parameters on the Microplastics Behavior. In Advanced Technology for Smart Environment and Energy (pp. 117-128). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-25662-2_10
Boots, B.; Russell, C.W.; Green, D.S.(2019). Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496-11506. https://doi.org/10.1021/acs.est.9b03304
Brahmachari, G. (2023). Biotechnology of microbial enzymes: production, biocatalysis, and industrial applications-an overview. Biotechnology of Microbial Enzymes, 1-10. https://doi.org/10.1016/B978-0-443-19059-9.00026-8
Carini, P., Delgado-Baquerizo, M., Hinckley, E. L. S., Holland‐Moritz, H., Brewer, T. E., Rue, G., ... & Fierer, N. (2020). Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. MBio, 11(1), e02776-19. https://doi.org/10.1128/mBio.02776-19
Dada, O. A., & Bello, J. O. (2023). Microplastics in carnivorous fish species, water and sediments of a coastal urban lagoon in Nigeria. https://doi.org/10.1007/s11356-023-26410-w
Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water research, 75, 63-82. https://doi.org/10.1016/j.watres.2015.02.012
Ekanayaka, A. H., Tibpromma, S., Dai, D., Xu, R., Suwannarach, N., Stephenson, S. L. & Karunarathna, S. C. (2022). A Review of the Fungi That Degrade Plastic. Journal of Fungi, 8(8), 772. https://doi.org/10.3390/jof8080772
Ekpei, P.U. (2023). Pastic pollution remains a topmost environmental concern. Online image, Sourced on 31st March, 2023 and deposited by Pius Utomi Ekpei/AFP via Getty Images.
Emenike, C. U., & Fauziah, S. H. (2019). Microplastic pollution in freshwater systems: occurrence, sources, effects, and solutions. Sustainable Chemistry and Pharmacy, 13, 100166.
Environmental Science and Pollution Research, 1-10. Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A., & Federici, S. (2023). Biotechnological methods to remove microplastics: a review. Environmental Chemistry Letters, 1-24.
Ghaffar, I., Javid, A., Bukhari, S. M., Ali, W., Hashmi, S. G. M. D., & Hussain, A. (2023). Nano-and microplastics in the environment: a potential threat to in-situ bioremediation of wastewaters. In Waste Management and Resource Recycling in the Developing World (pp. 417-436). Elsevier. https://doi.org/10.1016/B978-0-323-90463-6.00003-8
Glibert, P. M. (2020). Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae, 91, 101583. https://doi.org/10.1016/j.hal.2019.03.001
Habib, S., Iruthayam, A., Abd Shukor, M. Y., Alias, S. A., Smykla, J., & Yasid, N. A. (2020). Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria. Polymers, 12(11), 2616. https://doi.org/10.3390/polym12112616
Hadian-Ghazvini, S., Hooriabad Saboor, F., & Safaee Ardekani, L. (2022). Bioremediation Techniques for Microplastics Removal. In Microplastics Pollution in Aquatic Media: Occurrence, Detection, and Removal (pp. 327-377). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-8440-1_15
Jeyavani, J., Sibiya, A., Shanthini, S., Ravi, C., Vijayakumar, S., Rajan, D. K., & Vaseeharan, B. (2021). A review on aquatic impacts of microplastics and its bioremediation aspects. Current Pollution Reports, 7, 286-299. https://doi.org/10.1007/s40726-021-00188-2
Khdre, A. M., Ramadan, S. A., Ashry, A., & Alaraby, M. (2023). Chironomus sp. as a Bioindicator for Assessing Microplastic Contamination and the Heavy Metals Associated with It in the Sediment of Wastewater in Sohag Governorate, Egypt. Water, Air, & Soil Pollution, 234(3), 161. https://doi.org/10.1007/s11270-023-06179-x
Khdre, A. M., Ramadan, S. A., Ashry, A., & Alaraby, M. (2023). Chironomus sp. as a Bioindicator for Assessing Microplastic Contamination and the Heavy Metals Associated with It in the Sediment of Wastewater in Sohag Governorate, Egypt. Water, Air, & Soil Pollution, 234(3), 161. https://doi.org/10.1007/s11270-023-06179-x
Kumar, N., Pillai, S. C., & Heneghan, M. (2022). Fungal Bioremediation of Microplastics. In Influence of Microplastics on Environmental and Human Health (pp. 79-106). CRC Press. https://doi.org/10.1201/9781003109730-5
Kumar, R., Sharma, P., Manna, C., & Jain, M. (2021). Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Science of The Total Environment, 782, 146695. https://doi.org/10.1016/j.scitotenv.2021.146695
Kwon, G., Cho, D. W., Park, J., Bhatnagar, A., & Song, H. (2023). A Review of Plastic Pollution and Their Treatment Technology: A Circular Economy Platform by Thermochemical Pathway. Chemical Engineering Journal, 142771. https://doi.org/10.1016/j.cej.2023.142771
Litchman, E. (2023). Understanding and predicting harmful algal blooms in a changing climate: A trait‐based framework. Limnology and Oceanography Letters, 8(2), 229-246. https://doi.org/10.1002/lol2.10294
Martins, A., da Silva, D. D., Silva, R., Carvalho, F., & Guilhermino, L. (2023). Warmer water, high light intensity, lithium and microplastics: Dangerous environmental combinations to zooplankton and Global Health?. Science of The Total Environment, 854, 158649. https://doi.org/10.1016/j.scitotenv.2022.158649
Mishra, S., charan Rath, C., & Das, A. P. (2019). Marine microfiber pollution: a review on present status and future challenges. Marine pollution bulletin, 140, 188-197. https://doi.org/10.1016/j.marpolbul.2019.01.039
Nguyen, Q. A. (2022). Microbial community analysis using next-generation sequencing and bioinformatics tools to better understand biological waste and wastewater treatment (Doctoral dissertation).
Nyika, J. & Dinka, M. O. (2022). A mini-review on wastewater treatment through bioremediation towards enhanced field applications of the technology. AIMS Environmental Science, 9(4), 403-431.
Ogunola, O. F., & Owojori, O. J. (2021). Microplastics pollution in freshwater environments: occurrence, distribution, and potential impacts. Science of the Total Environment, 767, 144905.
Okeke, E. S., Olagbaju, O. A., Okoye, C. O., Addey, C. I., Chukwudozie, K. I., Okoro, J. O. & Abesa, S. (2022). Microplastic burden in Africa: a review of occurrence, impacts, and sustainability potential of bioplastics. Chemical Engineering Journal Advances, 100402. https://doi.org/10.1016/j.ceja.2022.100402
Ren, J., Ye, J., Cui, X., Zhang, X., Lang, C., Xie, W., ... & Zhang, L. (2023). Bacterial community (free-living vs particle-attached) assembly driven by environmental factors and a more stable network in the pre-bloom period than post-bloom. International Biodeterioration & Biodegradation, 180, 105592. https://doi.org/10.1016/j.ibiod.2023.105592
Sakellari, A., Karavoltsos, S., Moutafis, I., Koukoulakis, K., Dassenakis, M., & Bakeas, E. (2021). Occurrence and distribution of polycyclic aromatic hydrocarbons in the marine surface microlayer of an industrialized coastal area in the eastern Mediterranean. Water, 13(22), 3174. https://doi.org/10.3390/w13223174
Sarkar, S., Diab, H., & Thompson, J. (2023). Microplastic Pollution: Chemical Characterization and Impact on Wildlife. International Journal of Environmental Research and Public Health, 20(3), 1745. https://doi.org/10.3390/ijerph20031745
Scherer, C., Weber, A., Lambert, S., & Wagner, M. (2018). Interactions of microplastics with freshwater biota (pp. 153-180). Springer International Publishing. https://doi.org/10.1007/978-3-319-61615-5_8
Sharma, P., Singh, S. P., Iqbal, H. M., & Tong, Y. W. (2022). Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environmental Research, 211, 113102. https://doi.org/10.1016/j.envres.2022.113102
Sharma, S., Sharma, V., & Chatterjee, S. (2023). Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment-A review. Science of The Total Environment, 162627. https://doi.org/10.1016/j.scitotenv.2023.162627
Solanki, S., Sinha, S., & Singh, R. (2022). Myco-degradation of microplastics: an account of identified pathways and analytical methods for their determination. Biodegradation, 33(6), 529-556.https://doi.org/10.1007/s10532-022-10001-6
Talukdar, A., Bhattacharya, S., Bandyopadhyay, A., & Dey, A. (2023). Microplastic pollution in the Himalayas: Occurrence, distribution, accumulation and environmental impacts. Science of The Total Environment, 162495. https://doi.org/10.1016/j.scitotenv.2023.162495
Wang, Z., Hu, X., Kang, W., Qu, Q., Feng, R., & Mu, L. (2023). Interactions between dissolved organic matter and the microbial community are modified by microplastics and heat waves. Journal of Hazardous Materials, 448, 130868. https://doi.org/10.1016/j.jhazmat.2023.130868
Wani, A. K., Akhtar, N., Naqash, N., Rahayu, F., Djajadi, D., Chopra, C.& Américo-Pinheiro, J. H. P. (2023). Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. Environmental Science and Pollution Research, 1-24. https://doi.org/10.1007/s11356-023-25192-5
Wright, R. J., Bosch, R., Langille, M. G., Gibson, M. I., & Christie-Oleza, J. A. (2021). A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. Microbiome, 9, 1-22. https://doi.org/10.1186/s40168-021-01120-
Xu, X., Wang, S., Gao, F., Li, J., Zheng, L., Sun, C., ... & Qu, L. (2019). Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China's coastal seawaters. Marine pollution bulletin, 145, 278-286. https://doi.org/10.1016/j.marpolbul.2019.05.036
Yagnik, S. M., Arya, P. S., & Raval, V. H. (2023). Microbial enzymes in bioremediation. In Biotechnology of Microbial Enzymes (pp. 685-708). Academic Press. https://doi.org/10.1016/B978-0-443-19059-9.00010-4
Yang, Y., Liu, W., Zhang, Z., Grossart, H. P., & Gadd, G. M. (2020). Microplastics provide new microbial niches in aquatic environments. Applied microbiology and biotechnology, 104, 6501-6511. https://doi.org/10.1007/s00253-020-10704-x
Yi, X., Ning, C., Feng, S., Gao, H., Zhao, J., Liao, J., ... & Liu, S. (2022). Urbanization-induced environmental changes strongly affect wetland soil bacterial community composition and diversity. Environmental Research Letters, 17(1), 014027. https://doi.org/10.1088/1748-9326/ac444f
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Scientifica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.